
Instructions:
PICO CONTROLLER

A 4-channel low-voltage Solid State Relay controller designed for the
Raspberry Pi Pico. Ideal for projects involving:

• Model railroads
• RV / caravan
• 12V lighting projects
• Aquarium and greenhouse automation

Features of the product are:
• 4 x 2A (peak) 16V SSRs
• 128x64 pixel monochrome OLED display
• 4 x navigation buttons
• Buzzer
• Reset button
• Access to other GPIO pins
• Extensive MicroPython modules and example code
• Mounting holes

Note: Raspberry Pi Pico not included

Instructions version 1a.

TABLE OF CONTENTS
Warning...2
Using the Pico Controller..3
Downloading the Examples...4
Getting Started...5
Using the Solid State Relays..10
Warning: Low Volatge ONLY..10
Example 1. Buzzer Test...12
Example 2. Relay Menu..13
Example 3. Egg Timer...15
Example 4. Thermostat..18
The picocontroller Module..21
The picocontroller.gui Module..23
Pulse Width Modulation..25
Appendix A. Soldering Header Pins..27
Appendix B. Troubleshooting...28
Support...30
MonkMakes...31
Book by Simon Monk..32

WARNING
This product is for switching low voltage DC and AC only. Do NOT connect to
domestic 110 or 220V AC.

Page 2

USING THE PICO CONTROLLER
The MonkMakes Pico Controller is for when you need a microcontroller like the
Raspberry Pi Pico to control things. That is, to turn things on and off, or control the
power to low voltage loads like lights, motors or heaters. It does this using four
solid-state relays that can switch low-voltage AC or DC at a peak current of 2 Amps
and continuous for 1.5A and up to maximum of 16V. All the relay outputs are
protected by self-resetting polyfuses.

The Pico Controller also has a small OLED display and four push switches that can
provide a simple user interface for your project.

Pico GPIO (General Purpose Input Outputs) that are not used by the display,
switches, relays or built-in buzzer can also be accessed using the header pins on
the board, allowing sensors and other devices to be attached.

A Raspberry Pi Pico (not included) fits into a socket on the board, allowing different
variants of the Pico to swapped in and out. Perhaps a Pico 2 for extra performance,
or a Pico 2W for WiFi capability.

Page 3

DOWNLOADING THE EXAMPLES
To download the ZIP archive containing MicroPython example programs and useful
modules, visit https://github.com/monkmakes/picocontroller

Click on the Code button, select Download ZIP and then extract the downloaded
ZIP archive.

If you are familiar with git and would prefer to download the examples using the
command line, then you can do so with the command:

$ git clone https://github.com/monkmakes/picocontroller.git

With the extracted archive, you will find folders called:

• examples – MicroPython examples for the Pico Controller

• src – modules in MicroPython to use in projects

Page 4

GETTING STARTED
Although you can program Raspberry Pi Picos in a variety of programming
languages, in these instructions, we have settled on the most popular of these
(MicroPython).

To simplify access to the PicoController board, MonkMakes have developed some
code modules.

Plugging and unplugging a Pico

If your Pico was supplied without header pins attached, you will need to solder
these on yourself (see Appendix A).

The Pico (or any Pico model) fits into the header sockets with the USB port towards
the top.

When pushing the Pico's pins into the socket, line them up carefully, before pushing
the Pico into place, to avoid any bending of the pins.

Similarly when removing the Pico, carefully pull it out a few mm on the top and then
a few mm on the bottom, repeating until you feel the Pico come free, without
bending the pins.

Thonny

Thonny is a Python editor to run on your computer, that allows you to edit
MicroPython programs before running them on your Pico. Thonny is available for
most operating systems including Raspberry Pi OS. You will need to install it
following the instructions here:

https://thonny.org

Page 5

Installing the Modules

Thonny, allows you to run a program on your computer's file system, as if the
program was stored on your Pico. When you press the Run button, it sends the
code shown in the editor window to the Pico where it is then run. However, if that
code uses modules of code, then those modules must actually be installed onto the
Pico's file system before the program will work.

To install the modules for the Pico Controller (that you downloaded from Github
earlier) onto your Pico, you need to use Thonny.

The steps for this are:

1. Connect your Pico to your computer by USB, then start Thonny and make sure
that you can see the >>> prompt in the console. If its not there, press CTRL-c or the
Thonny Stop button. If this doesn't work, see Appendix B (trouble-shooting).

2. On the Thonny View menu, select Files. The Thonny window should now look
like this, with the files of the Pico listed on the bottom left (in this case just main.py).

3. From Thonny's Tools menu, select the Manage Packages.. option, and type
picocontroller into the search area and hit Enter.

Page 6

Select the result picocontroller (for the MonkMakes Pico Controller)

Click on Install. Don't worry if there is a later version that 0.4. Just install the latest
version. Now, when the installation has finished, when you return to the main
Thonny window, you should see that there is a lib folder in the files area.

Page 7

The package installation should now be complete and we are ready to experiment
with the PicoController board.

The Python Shell

We can now try out the PicoController from the Python Shell area at the bottom of
the Thonny window.

Type in these commands:

>>> from picocontroller import Buzzer
>>> buzzer = Buzzer()
>>> buzzer.on()
>>> buzzer.off()

When you enter buzzer.on() the buzzer will start buzzing, and to turn the buzzer
off, type buzzer.off().

Now, let's test out one of the relays. To find out more about relays, see Page XX.

To use the relay we will need something to tell us that the relay has activated. We
can use a digital multimeter (DMM) set to its continuity (or buzzer) mode, as shown
below.

Page 8

Notice how I have used short jumper wires and alligator clip leads to connect the
relay screw terminals to the DMM. If you DMM has thin probe leads, you may be
able to fit them directly into the screw terminal holes.

Now try running the following commands to turn Relay A on and off. When the relay
is on, the DMM should buzz.

>>> from picocontroller import Relay_A
>>> Relay_A.on()
>>> Relay_A.off()

Let's try using the OLED display. The picocontroller.gui module has a number of
useful different ways of displaying things, including: a retro 7-segment simulation, a
menu system and a console for displaying messages. It is the latter, that we will use
here. You can learn more about the picocontroller.gui module
on Page 10.

Run the following commands, and you will see a message
appear on the OLED display.

from picocontroller.gui import OLEDConsole
>>> console = OLEDConsole()
>>> console.print('Hello World')

In the next section we will learn a bit more about using the relays.

Page 9

USING THE SOLID STATE RELAYS

WARNING: LOW VOLTAGE ONLY

A traditional relay is an electromechanical device that uses an electromagnet to
actually move a pair of contacts.

When a current of a few tens of mA (milliamps) flows through the coil, it pulls the
contacts together making an electrical connection, as if you had flipped a switch.

The important thing here is that there is NO electrical connection between the coil
and the contacts. The contacts are free to operate at a different voltage and switch
a completely different circuit to whatever the coil is controlled by (typically a
microcontroller like the Pico using some extra circuitry).

Electro-mechanical relays are cheap, but switch slowly and require quite a high
current through the coil, to activate them. The Pico Controller uses a type of relay
called a solid state relay (SSR). Instead of a coil of wire and contacts, the SSRs
used in the Pico Controller use an LED and phototransistors all contained within a
small package. The LED only needs about 1mA to switch the phototransistors on,
and is still electrically isolated from the 'contacts'.

Here is a section of the Pico Controller's schematic diagram showing how the SSR
is used, connected directly to one of the Pico's GPIO pins.

Page 10

The SSR behaves just like an electromechanical relay, except that it switches much
faster, and does not have any moving parts in it. The SSR is protected against over-
current by a separate self-resetting polyfuse, that cuts of the current if it exceeds 2A
for more than a few seconds.

Wiring a Relay Output

The output of each relay goes to a 2-way screw terminal, and can be treated just
like a switch that happens to be controlled by the Pico Controller. Here's an
example of how you might want to wire up some 12V strip-lighting to be switched by
the Pico Controller.

Note that the red connection indicates the positive 12V supply. The Pico Controller
is using the USB connection for its own power and is completely separate from the
12V supply for the Lamp.

You will find an example using the picocontroller.gui package's menu system to
control a relay in Example 2 on Page 13.

Page 11

EXAMPLE 1. BUZZER TEST
The Pico Controller comes with a selection of example programs designed to
illustrate the use of the MicroPython modules and the Pico Controller and to serve
as a basis for your own projects. The first if these is called Buzzer Test and can be
found in the code download from Github in the examples folder. The file is called
buzzer_test.py.

Load it up into Thonny and run it.

As you will see from the comment
string at the top of the code, if you
press Button A (the left-most) the
buzzer will sound at it's default
frequency of 1.5 kHz.

Pressing button B (next right) the
buzzing will stop.

You can also change the
frequency of the buzzer by
supplying a parameter of the
frequency in Hz in the the on
method, like this:

buzzer.on(4000)

Pressing Button D shows the
technique to use if you just want a
short beep. That is, turn the buzzer
on, delay for (in this case) 0.3 of a
second, and then turn the buzzing off again.

Page 12

EXAMPLE 2. RELAY MENU
This example (which you will find in the download
as examples/relay_menu.py) illustrates the
picocontroller.gui package's menu system to
control the relays.

The menu system uses the display and the four
push buttons (A to D – left to right). The push
buttons acting as navigation buttons to move up
and down the menu items or to select one.

So, here on the right, above button A on the
display is a ^ symbol indicating that if button A is
pressed, at this point, the next item up in the menu
(Relay A off) will become selected.

The text ok on the display above button D,
indicates that current selection will be actioned if button D is pressed. In this case,
that would open a sub-menu for Relay B.

Here is the code for the project.

from picocontroller import *
from picocontroller.gui import *
from time import sleep

relay_b_submenu_data = [
 {'id' : 'relay_B_on', 'label' : 'On'},
 {'id' : 'relay_B_off', 'label' : 'Off'},
 {'id' : 'back', 'label' : 'Back'}
]

menu_data = [
 {'id' : 'relay_A_on', 'label' : 'Relay A on'},
 {'id' : 'relay_A_off', 'label' : 'Relay A off'},
 {'id' : 'relay_B_submenu', 'label' : 'Relay B >'}
]

main_menu = Menu(menu_data)
relay_b_submenu = Menu(relay_b_submenu_data)

menu = main_menu
menu.draw_menu()

while True:
 selection = menu.check_keys()
 if selection:
 print(selection)
 if selection == 'relay_B_submenu':
 menu = relay_b_submenu

Page 13

 menu.draw_menu()
 if selection == 'back':
 menu = main_menu
 menu.draw_menu()
 if selection == 'relay_A_on':
 Relay_A.on()
 if selection == 'relay_A_off':
 Relay_A.off()
 if selection == 'relay_B_on':
 Relay_B.on()
 if selection == 'relay_B_off':
 Relay_B.off()
 sleep(0.1)

The menu and submenu are both defined as Python Lists of dictionaries, each
dictionary being one menu option, for example:

{'id' : 'relay_B_on', 'label' : 'On'},

The menu has an id that is used to identify the menu option and a label which is
the text actually displayed.

Handling of changes to the menu selections takes place in the main while loop.
This loop should start my checking whether any selection has been actioned by
using menu.check_keys(). If it has, then the selection (which will be a menu item
id) is compared and the appropriate Python code run. If this action is to switch to a
sub-menu, then the variable menu (the current menu) is assigned the value of the
submenu and the display refreshed to show the new menu using menu =
relay_b_submenu and menu.draw_menu() respectively.

Page 14

EXAMPLE 3. EGG TIMER
This example illustrates the use of the picocontroller.gui package's
SevenSegDisplay class.

The display shows a time in minutes and seconds which can be increased or
decreased by pressing buttons B and A respectively. When button C is pressed the
countdown starts and when 0 is reached, the buzzer sounds. Button D resets the
timer.

Here is the code:

from picocontroller import *
from picocontroller.gui import *
from time import sleep
from machine import Timer

buzzer = Buzzer()
t = Timer()

time_display = SevenSegDisplay(0, 0, digit_w=20, digit_h=40,
num_digits=3)

default_mins = 5
default_secs = 0

mins = default_mins
secs = default_secs
is_running = False

Page 15

t.init(mode=Timer.PERIODIC, period=1000, callback=lambda
t:update_time())

def update_time():
 global mins, secs
 if not is_running:
 return
 if secs == 0:
 if mins == 0:
 stop_running()
 buzzer.on()
 else:
 secs = 59
 mins -= 1
 else:
 secs -= 1
 update_display()

def start_running():
 global is_running
 is_running = True

def stop_running():
 global is_running
 is_running = False

def update_display():
 time_display.draw(mins * 100 + secs)

update_display()
while True:
 if Button_A.was_pressed() and not is_running:
 buzzer.off()
 if mins < 9:
 mins += 1
 update_display()
 if Button_B.was_pressed():
 buzzer.off()
 if mins > 1:
 mins -= 1
 update_display()
 if Button_C.was_pressed():
 buzzer.off()
 if is_running:
 stop_running()
 else:
 start_running()
 if Button_D.was_pressed():
 buzzer.off()
 mins = default_mins
 secs = default_secs
 stop_running()

Page 16

 update_display()

There is quite a lot of code here, so you might like to follow along in Thonny.

The 3 digit, 7-segment display is defined by the line:

time_display = SevenSegDisplay(0, 0, digit_w=20, digit_h=40, num_digits=3)

The first two parameters are the x and y coordinates of the top left of the 7-segemnt
display. The parameters digit_w and digit_h set the width and height of each
digit in pixels, and num_digits the number of digits to be displayed.

This example uses the MicroPython Timer class. You can find out more about this
here: https://docs.micropython.org/en/latest/library/machine.Timer

The update_time function is called every second by the timer, updating the
number of seconds and minutes remaining and calling update_display to refresh
the time shown on the display.

To set the value to be displayed on the 3 digit 7-segment display, the draw method
supplies a 3 digit number made up of the number of minutes times 100 plus the
number of seconds.

time_display.draw(mins * 100 + secs)

Page 17

https://docs.micropython.org/en/latest/library/machine.Timer

EXAMPLE 4. THERMOSTAT
To try out this example, you will need to buy and attach one of the popular
DS18B20 temperature sensors and connect it to the Pico Controller's GPIO pins.

This project illustrates the use of the display's ssd1306 module to display text and
graphics on the OLED display, as well as using the readings for the sensor.

The project acts as a simple thermostat, assuming that relay A controls the power
to a heater.

This DS18B20 sensor, normally has
bare copper leads on the end of its
cable. One way to attach these to
header pins is to crimp header sockets
onto these leads. Alternatively, you can
cut female to female jumper leads in
half and solder the half-leads onto the
leads from the sensor, to achieve the
same ends.

The DS18B20 needs to be wired up as
follows:

Pico Pin DS18B80 Pin Lead color

GND GND Black

3.3V VCC Red

GPIO 14 Data Out Yellow

DS18B20 sensors, are often supplied with a resistor to use as a pull-up resistor.
Generally, if you are only using one sensor, and you don't have a long lead to it,
then you do not need to use this. The code in this example uses the Pico's GPIO
pin's built-in pull-up resistor.

Here is the code for this example:

from machine import Pin
from picocontroller import *
from time import sleep

import onewire
import ds18x20

ONE_WIRE_PIN = 14

ow = onewire.OneWire(Pin(ONE_WIRE_PIN, pull=Pin.PULL_UP))
ds = ds18x20.DS18X20(ow)

Page 18

relay = Relay_A

MIN_T = 0
MAX_T = 40

thermometer = None
t_set = 20.0
t = 0.0

def refresh_display(output_on):
 text_color = 1
 background_color = 0
 if output_on:
 text_color = 0
 background_color = 1
 display.fill(background_color)
 display.text('Measured', 5, 20, text_color)
 display.text(str(t), 90, 20, text_color)
 display.text('Set', 5, 40, text_color)
 display.text(str(t_set), 90, 40, text_color)
 display.show()

def connect_thermometer():
 global thermometer
 try:
 devices = ds.scan()
 thermometer = devices[0]
 except:
 print("Couldn't detect thermometer - check wiring")

def read_temp():
 global t
 ds.convert_temp()
 t = ds.read_temp(thermometer)

connect_thermometer()
refresh_display(False)
while True:
 read_temp()
 if t < t_set:
 # power on if measured temp too low
 relay.on()
 refresh_display(True)
 else:
 relay.off()
 refresh_display(False)
 if Button_A.was_pressed() and t_set > MIN_T:
 t_set -= 1
 refresh_display(False)
 if Button_B.was_pressed() and t_set < MAX_T:
 t_set += 1
 refresh_display(False)

Page 19

The DS18B20 uses the Onewire bus interface, which, along with the protocol of the
sensor itself are provided with interfaces with the onewire and ds18x20 modules
included with MicroPython. So, no special installation of modules is needed.

The Onewire interface is initialised using the line:

ow = onewire.OneWire(Pin(ONE_WIRE_PIN, pull=Pin.PULL_UP))

This takes a Pin as it's parameter, and its here that the pin is defined with it's
internal pull-up resistor enabled so that the Onewire bus will work.

The variable t_set should contain the desired temperature in degrees C and t will
contain the measured temperature.

The function refresh_display uses the SSD1306 library to display both the set
and measured temperatures, inverting the text into black on white if the output_on
variable indicates that the heater controlled by relay A is on.

Page 20

THE PICOCONTROLLER MODULE
The picocontroller module provides a convenient way of interacting with the
physical hardware of the Pico Controller. It provides some variables as well as two
classes, Button and Relay.

Variables

Button_A, Button_B,
Button_C and Button_D

Instances of the class Button for each of the four
navigation buttons.

Relay_A, Relay_B,
Relay_C and Relay_D,

Instances of the class Relay for each of the four
relays.

display The instance of the SSD1306 class created when
the picocontroller module is imported.

i2c A link to the I2C bus object

W The screen width in pixels (128)

H The screen height in pixels (64)

Button Class

Method Example

is_pressed() Button_A.is_pressed() Returns true if button A is
currently pressed.

was_pressed() Button_A.was_pressed() Returns true when button A is
released after being pressed.

Relay Class

Method Example

on() Relay_A.on() Turn the relay on

Off() Relay_A.off() Turn the relay off

value(new_state) Relay_A.value(1) 1 for on, 0 for off

on_for(duration) Relay_A.on_for(10000) Turn the relay on for
the number of

Page 21

milliseconds in the
parameter. (Non-
blocking)

off_for(duration) Relay_A.off_for(10000) Turn the relay off for
the number of
milliseconds in the
parameter. (Non-
blocking)

oscillate(period) Relay_A.oscillate(1000) Turn the relay on
and off with a delay
of the number of
milliseconds in the
parameter. (Non-
blocking)

cancel_timer(value=
on/off)

Relay_A.cancel_timer()
Relay_A.cancel_timer(1)

Cancel any
repeating timer,
optionally setting the
Relay to on or off.

Buzzer Class

Method Examples

on(f=frequency) buzzer = Buzzer()
buzzer.on()
buzzor.on(3000)

Start the buzzer at a
default frequency or a
specified frequency in Hz

off() buzzer = Buzzer()
buzzer.off()

Silence the buzzer

Page 22

THE PICOCONTROLLER.GUI MODULE
The gui module within the picocontroller module
contains a number of classes, for building user
interfaces using the OLED display and four navigation
buttons.

SevenSegDisplay Class

This class allows you to simulate 7-segment displays on
the display. The position, size and number of digits of
the display can all be set.

Method Example

SevenSegDisplay(x, y,
digit_w=20,
digit_h=40,
num_digits=4)

d1 = SevenSegDisplay(0, 0,
digit_w=10, digit_h=20,
num_digits=2)

Constructor, defining x,y or
origin, digit width and height
in pixels and number of
digits.

draw(value) d1 = SevenSegDisplay(0, 0,
digit_w=10, digit_h=20,
num_digits=2)
d1.value(99)

Display 99 on a 2 digit
display.

OLEDConsole Class

The OLEDConsole class provides a way of sending output text
to the display. Once the display is full, it will scroll up
automatically.

The example oled_console_example.py illustrates the use of this
class.

Method Examples

OLEDConsole(line
_spacing=10)

log = OLEDConsole()
log =
OLEDConsole(line_spacing=12)

Create a new instance,
optionally setting the line
spacing in pixels.

print() log.print('Counting ' +
str(x))

Print a string to the console.

clear() log.clear() Clear the display.

Page 23

Menu Class

The Menu class is pretty well illustrated by the relay_menu.py example. It provides
a data-driven way of expressing menus and sub-menus using the OLED display.

All the examples in the table below assume the menu_data below:

menu_data = [
 {'id' : 'relay_A_on', 'label' : 'Relay A on'},
 {'id' : 'relay_A_off', 'label' : 'Relay A off'},
 {'id' : 'relay_B_submenu', 'label' : 'Relay B >'}
]

Method Example

Menu(menu_data,
menu_sep=10)

main_menu =
Menu(menu_data)

Construct an instance of Menu,
optionally with a line spacing.

draw_menu() main_menu.draw_menu() Render the menu on the display, with
the current selection highlighted.

check_keys() main_menu.check_keys() Check if buttons A B or C have been
pressed. Pressing A move the menu
up one place, B – down a place and
C actions the selection returning the
id of the current selelection.

Page 24

PULSE WIDTH MODULATION
The SSRs used in the PicoController are capable of more than just on/off control.
They can also be used say to control the brightness of an LED or the speed of a
motor using a process called Pulse Width Modulation or PWM.

A PWM output supplies a train of
pulses to the control pin. The duration
of these pulses is varied to vary the
apparent brightness of a lamp or the
speed of a motor. So a short pulse will
make the lamp appear dim or a motor
slow, but if the pulse is long, so that it
is 3.3V for most of the cycle, then the
lamp will appear bright or the motor
rotate quickly.

Although the SSRs used in the Pico
Controller are much faster than
electromechanical relays, they are still
relatively slow in electronics terms.

The graph below shows how the
response of the relay (at full load of 1.5A) to PWM at various frequencies.

The ideal SSR would have a completely straight line, and at lower currents than the
test current here, you get close to that ideal. But here, you can see that you get
quite acceptable results up to a frequency of about 100Hz.

MicroPython has built-in support for PWM. You will find an example program for it in
examples/pwm_test.py.

Page 25

from machine import PWM
from picocontroller import Relay_A

pwm_Relay_A = PWM(Relay_A._pin)

while True:
 f = int(input('f (Hz):'))
 d = int(input('duty (0..65535):'))
 pwm_Relay_A.freq(f)
 pwm_Relay_A.duty_u16(d)

You will need to attach a load to your Pico Controller, such as the LED lamp of
Page 11.

When you run the program, you will be prompted for first for the PWM frequency (I
suggest using 100. Then for the duty. Try the values: 0 (off) 32767 (half brightness)
and 65535 (full brightness).

Page 26

APPENDIX A. SOLDERING HEADER PINS
If your Pico does not have header pins attached, you will have to solder them on.
To do this, you will need a soldering iron and some solder wire. Don't worry if you
are new to soldering its not so hard.

To keep the pins straight, it is a good idea to push them into the Pico Controller long
ends first. This has the added advantage that once soldered, the Pico will be in the
right place, and won't need to be relocated.

If its your first attempt at soldering, watch a few tutorials before you start to get an
idea of what you are trying to do. Here's a good one:

https://www.youtube.com/watch?v=37mW1i_oEpA

Page 27

APPENDIX B. TROUBLESHOOTING
Problem: The orange power LED in the MonkMakes logo on the Pico Controller
does not light.

Solution: Check the USB connection, and try a different USB port on your
computer.

Problem: I can't upload anything onto my Pico, even through the Pico Controller
has power indicated by the orange LED being lit.

Solution: There are a number of possible reasons that this might happen.

1. The program running on the Pico is still running, this must be halted before
running a new one. Try clicking the Stop button repeatedly and in the Shell area
typing CTRL-c

2. Thonny may not be configured to work with your Pico board. Open the Thonny
Preferences panel, select the Interpreter tab and make sure that MicroPython
(Raspberry Pi Pico) is selected and the correct port is selected in the drop-down
Port or WebREPL.

3. MicroPython is not installed on your Pico.

It may be that your Pico has been used with a different programming environment
such as Arduino and does not have the MicroPython firmware. To reinstall
MicroPython, put your Pico into Upload mode by holding down the Boot switch
while you plug it in and then on the Preferences panel click on Install or update

Page 28

MicroPython.

Set the options as shown below, in the variant drop-down, choose your particular
type of Pico and then click Install.

Problem: I can't tell if the Relay is working.

Solution: Attach a DMM in continuity mode as described on Page 9.

Page 29

SUPPORT
You can find the Product's information page here:
https://monkmakes.com/picocontroller including a datasheet for the product.

If you need further support, please email support@monkmakes.com.

Page 30

mailto:support@monkmakes.com

MONKMAKES
As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your
electronics projects. Find out more, as well as where to buy here:
https://monkmakes.com you can also follow MonkMakes on X as @monkmakes
and on Instagram as @monk_makes_ltd

A selection of products: Connector for micro:bit, Electronics Kit 1 for Pico, Pico
Proto PCB and Breadboard for Pico.

Page 31

https://monkmakes.com/

BOOK BY SIMON MONK
If you like this product and want to learn more about programming in MicroPython,
then you might like Simon Monk's book on the subject.

Page 32

	Warning
	Using the Pico Controller
	Downloading the Examples
	Getting Started
	Plugging and unplugging a Pico
	Thonny
	Installing the Modules
	The Python Shell

	Using the Solid State Relays
	Warning: Low Voltage ONLY
	Wiring a Relay Output

	Example 1. Buzzer Test
	Example 2. Relay Menu
	Example 3. Egg Timer
	Example 4. Thermostat
	The picocontroller Module
	Variables
	Button Class
	Relay Class
	Buzzer Class

	The picocontroller.gui Module
	SevenSegDisplay Class
	OLEDConsole Class
	Menu Class

	Pulse Width Modulation
	Appendix A. Soldering Header Pins
	Appendix B. Troubleshooting
	Support
	MonkMakes
	Book by Simon Monk

