
Instructions:
Electronics Kit 1 for
Pico
Learn Coding and Electronics
with the Raspberry Pi Pico

 Dr. Simon Monk

Technical reviewer: Ian Huntley v1e

TABLE OF CONTENTS
Parts ..3
The Raspberry Pi Pico...5
Setting up ..7
Project 1. Make an LED Blink..11
Project 2. Make 2 LEDs Blink...16
Project 3. RGB Color Display...18
Project 4. Touch Switch...21
Project 5. Servomotor Control...26
Project 6. Thermometer...31
Project 7. Thermometer Plus...41
Project 8. Light Meter..45
Project 9. Fader..50
Project 10. Lie Detector...52
Appendix A. Troubleshooting...56
Appendix B. How a Breadboard Works..57
Appendix C. The Resistor Color Code..59
Appendix F. Scales ...62
Raspberry Pi Pico Pinout...68

ACKNOWLEDGEMENTS
The breadboard diagrams in this booklet were created using Fritzing. See
https://fritzing.org/

Page 2

PARTS
Before you start making your projects, please make sure that you have all the parts
listed below.

Solderless breadboard.

Jumper wires - Use to connect things together on the
breadboard.

Set of header pins, that can be soldered to your Raspberry
Pi Pico. See the section “Setting Up” for instructions. If your
Pico already has pins attached, then you don't need these.

Servomotor and bag of servomotor arms and screws.

5 x 470Ω resistor (yellow, violet, brown stripes). *

2 x 1kΩ resistor (brown, black, red). *

4.7MΩ resistor (yellow, violet and green stripes). *

2 x Red LED – the longer lead is the + (positive) lead.

RGB LED – the longest lead is the – (negative) lead.

Page 3

2 x Tactile push switches.

Phototransistor. The longer lead is the negative lead.

Buzzer.

Pot (variable resistor).

* See Appendix C for more help identifying resistors.

You will also need a Raspberry Pi Pico and a micro-USB lead to connect it to your
computer.

If your Pico was supplied without header pins soldered on, then you will need a
soldering iron and solder, to attach the supplied header pins onto the Pico.

Some scrap cardboard, scissors, paper glue and a craft knife will also be required if
you want to box Projects 5 to 8.

Page 4

THE RASPBERRY PI PICO
The Raspberry Pi Pico is a small circuit board containing a microcontroller chip and
a few supporting components plus a whole load of connections that you can use to
control electronics. This is quite different from other models of Raspberry Pi that are
proper computers running an operating system. The pico can only run one program
at a time.

The Pico (as we shall refer to it) needs a computer (Windows, Mac, Linux or a
regular Raspberry Pi) in order for you to write programs for it and then send those
programs to it using its built-in USB interface. The USB connector also provides
power to the Pico.

The connections all around the edge of the Pico are called General Purpose Input
Output (GPIO) pins and allow you to connect electronics to the Pico such as LEDs,
servomotors and sensors of different types.

The Pico has its own custom microcontroller chip (the RP2040). This will run
programs stored in the Pico's flash memory chip, or even run an interactive Python
shell.

Page 5

Although you could solder things directly to the GPIO pins, that would make it hard
to take the project apart again to use the Pico for something else, so most people
solder header pins onto the Pico and then plug it into solderless breadboard as
shown below.

This breadboard has labels for the Raspberry Pi Pico on it. Some of the photos in
this booklet show standard breadboard which has numbered rows rather than Pico
pin names.

This way, we get all the soldering over at once, and we can just push components
and jumper wires onto the breadboard when we are making a project, as shown
below.

Page 6

SETTING UP
Before getting going on the projects, there are a few steps that you need to take to
prepare your Pico and the computer that you will need in order to program it.

Soldering header pins

If your Pico does not have header pins attached, you will have to solder on the pins
supplied with this kit. To do this, you will need a soldering iron and some solder
wire. Don't worry if you are new to soldering its not so hard.

To keep the pins straight, it is a good idea to push them into the solderless
breadboard long ends first. This has the added advantage that once soldered, the
Pico will be in the right place, and won't need to be relocated. It's a good idea to use
a ruler or other flat object to push the rows of header pins onto the breadboard, as
they can be sharp on your fingers.

The pins need to both start at row 1 (marked on the breadboard) and run down
columns c and h.

Page 7

Once the pins are in the right place on the breadboard, the Pico should fit easily
over the pins with the USB connector towards the edge of the breadboard.

If its your first attempt at soldering, watch a few tutorials before you start to get an
idea of what you are trying to do. Here's a good one:

https://www.youtube.com/watch?v=37mW1i_oEpA

Page 8

Once all the pins are soldered, your breadboard should look like this:

Thonny

Thonny is a Python editor, that allows you to edit MicroPython programs using your
computer before running them on your Pico. Thonny is available for most operating
systems including Raspberry Pi OS, so, if you have a Raspberry Pi 4 or 400, you
can use it to program your Pico.

If you are using a regular Raspberry Pi to program your Pico, then you are in luck,
because Thonny is pre-installed. If you are using a Mac, Windows of Linux
computer, then you will need to install it following the instructions here:

https://thonny.org

Downloading the Project Software

All the project code for this kit is available for download from GitHub here:

https://github.com/monkmakes/pico_kit1
To download the programs onto your computer, type the address above into your
computer's browser, click on the Code button, and then select Download ZIP from
the menu.

Page 9

Once the ZIP file has downloaded, extract the contents of the ZIP file. The process
will be different for different operating systems, but, generally if you right-click on
the file there will be an option to extract the contents.

To open one of the downloaded programs in Thonny, you should be able to double-
click it. Alternatively, start Thonny and then click Open and browse to the file.

Powering the Projects

Most if the time, your Pico is going to be powered by your computer using the USB
lead. However, if you want to make your project independent, a great way of
powering it is by using a
rechargeable USB battery like the
one shown here.

Page 10

PROJECT 1. MAKE AN LED BLINK
To make this first project, you are going to wire up the breadboard as shown below,
and then run the program for this project using Thonny.

Step 1. Find the parts you
need

For this project, you will need the
following items:

● 470Ω Resistor (yellow, violet
and brown stripes)

● Red LED
● A jumper wire

Use the table of parts on pages 2 and 3
to identify the parts you need. If you are
interested in what the resistor color
stripes mean, see Appendix C.

Step 2. Build the
breadboard.

Let's start by placing the components
onto the breadboard. Using the diagram
to the right, push the component legs
through the holes in the breadboard at
the positions shown.

If you haven't come across breadboards in the past, Appendix B provides an
explanation of how they work.

Be careful with the orientation of the LED - the long leg is the positive lead (row 27),
and the shorter leg is the negative lead (the rightmost column marked with a blue
line and known as the negative bus). It does not matter which way around the
resistor goes.

Page 11

Step 3. Run the Program

To run the program, first open the file 01_blink.py in Thonny and connect your Pico
via USB lead to your computer.

To start the program, click on the Run button (play icon). If everything is set up
correctly, the LED should be blinking on and off.

When you want to exit the program, click on the Stop button.

If the LED doesn't blink on and off, check that it's the right way around and that
everything is wired up as shown in the diagram.

What's happening here is that Thonny is running the program on your Pico without
fully installing it on the Pico. By this, I mean that the program will not run on the Pico
without the Pico being attached to your computer and if you were to detach your
Pico and power it from a separate USB power adapter, then it would not run the
program.

To fully install the program, so that it will start automatically when the Pico is
powered up, click on the Stop button and then switch Thonny to Regular mode
rather than beginner mode by clicking on the link shown above.

Once in regular mode, there are a few new options available on the menu including
Save Copy. When you click on this, you will be given the option to save to either
This Computer or your Raspberry Pi Pico.

Page 12

Click the Raspberry Pi Pico button, make sure the file has the name main.py, and
then click OK.

Page 13

Restart the Pico by unplugging it and plugging it back in again; the LED should now
blink, whether or not Thonny is running the program.

The Code for Project 1

If you want to understand how the code works, take a look at the code in Thonny.

Any lines beginning in # are called comment lines. These are not actually program
code, but rather explain something that's going on in the code.

from machine import Pin
from utime import sleep

led = Pin(16, Pin.OUT)

while True:
 led.on()
 sleep(0.5) # pause
 led.off()
 sleep(0.5)

The import commands specify the library files that the code uses. In this case, the
machine library gives our code access to Pin and the utime library gives us the
sleep function.

When defining the variable led, the number 16 refers to the pin that the LED is
connected to. Pin.OUT indicates that the pin is to be used as an output.

The while loop will just continue forever, turning the LED on, pausing for half a
second and then turning it off again, pausing for another half a second before
getting back around the loop again.

This approach is fine for blinking an LED as long as you don't want to do anything
else at the same time. In this case, and alternative method of blinking the LED is
possible because the Pico's microcontroller chip contains a hardware timer that
allows us to set things to happen at regular intervals. This is just what we need to
make our LED blink. So you could replace the while loop with the following code:

from machine import Pin, Timer

led = Pin(16, Pin.OUT)

def tick(timer):
 led.toggle()

Timer().init(freq=2, callback=tick) # call tick twice a sec

Page 14

The parameter freq=2 specifies that the timer should trigger something at 2 Hertz –
that is 2 times per second. The callback parameter specifies the name of the
function to be called. In this case that is the function called tick. This tick function
tells the pin to toggle. That is, if its on, to turn off and if its off to turn it on.

Things to Try

To make the LED blink faster, try changing the values of the freq parameter.

The Electronics

Here is a schematic diagram of how the LED is connected to the Pico.

When the pin GP16 of the Pico has a value of 0, its output voltage is also 0, and
when its value is set to 1, its output voltage will be 3.3V. Current will only flow
through the LED and resistor, making the LED light if there is a difference in voltage
across them. If the output pin is at 0V there is no voltage difference so the LED will
not light. However, when the pin is at 3.3V current will flow, lighting the LED. The
resistor is needed to restrict the current flowing through the LED. If too much
current flows through the LED it could break or damage the output pin of the Pico,
so always use a resistor.

The resistor's resistance value is 470Ω. This determines how much the resistor
impedes the flow of current and this resistor will limit the flow of current through the
LED to about 3mA.

Page 15

PROJECT 2. MAKE 2 LEDS BLINK
Don't dismantle Project 1 just yet, for Project 2, you are going to add another LED
and make the two LEDs blink alternately.

BEFORE you start changing what's on the breadboard, unplug the USB lead
from your Pico. An accidental short-circuit could damage or break your Pico
or your computer.

Step 1. Find the parts you
need

For this project, you will need the
following items:

● Two 470Ω Resistors (yellow,
violet, brown stripes)

● Two Red LEDs
● Two jumper wires

Step 2. Build the
breadboard.

Wire up the breadboard using the
diagram to the right as a guide.
Remember to put the LEDs longer
positive leads in the position marked
with a + below.

Step 3. Run the Program

Load and run the program called 02_blink_double.py in Thonny. The LEDs should
now blink in turn.

Page 16

The Code for Project 2

The code is very similar to the more advance blink code using a timer, except that
now we have 2 LEDs to toggle.

from machine import Pin, Timer

led1 = Pin(16, Pin.OUT)
led2 = Pin(15, Pin.OUT)
led1.value(0)
led2.value(1)

def tick(timer):
 led1.toggle()
 led2.toggle()

Timer().init(freq=2, callback=tick)

One LED is turned on and the other off before the toggling starts, so that the LEDs
alternate.

The Electronics

Please refer to the description for project 1. This project is just the same, but
repeated for a second LED.

Page 17

PROJECT 3. RGB COLOR DISPLAY
This project will demonstrate how to control an RGB (multicolor) LED with your
Pico, cycling through different colors when you press the button.

Step 1. Find the parts
you need

For this project, you will need the
following items:

● Three 470Ω Resistors
(yellow, violet, brown
stripes)

● An RGB LED
● A push switch
● Four jumper wires

Step 2. Build the
breadboard.

Wire up the breadboard using the
diagram to the right as a guide.

All three of the resistors used in
this project are the same value of
470Ω. You should find that one
of the RGB LED's leads is longer
than the rest. Place the RGB LED such that the long lead is in row 28 of the
breadboard and connected to the GND (black) wire. Make sure that the legs of the
resistors are not touching each other.

The push switch should be inserted with its legs on rows 28 and 30.

Step 3. Run the Program

Load and run the program called 03_rgb.py in Thonny. Pressing the switch should
cycle through a series of colors on the LED.

Page 18

The Code for Project 3

Here's the code for Project 3.

from machine import Pin, PWM
from utime import sleep

red_ch = PWM(Pin(16))
green_ch = PWM(Pin(17))
blue_ch = PWM(Pin(15))

red_ch.freq(1000)
green_ch.freq(1000)
blue_ch.freq(1000)

button = Pin(12, Pin.IN, Pin.PULL_UP)
colors = [[255, 0, 0], [127, 127, 0],[0, 255, 0],
 [0, 127, 127], [0, 0, 255], [127, 0, 127]]

def set_color(rgb):
 red_ch.duty_u16(rgb[0] * 256)
 green_ch.duty_u16(rgb[1] * 256)
 blue_ch.duty_u16(rgb[2] * 256)

index = 0
set_color(colors[index])
while True:
 if button.value() == 0:
 index +=1
 if index >= len(colors):
 index = 0
 sleep(0.2)
 set_color(colors[index])

Whereas projects 1 and 2 just turned LEDs on and off, in this project, different
colors are mixed on the RGB LED by separately controlling the brightness of the
red, green and blue channels of the LED.

To do this, something called PWM (Pulse Width Modulation) is used. You can read
more about this in Appendix D.

To use PWM with a pin, you need to wrap the Pin declaration in PWM like this:

red_ch = PWM(Pin(16))

This specifies that PWM is to be used on GP16. There are similar lines of code for

Page 19

the green and blue channels.

The colors list is a list of lists each of three values between 0 and 255. The arrays of
three elements represent a single colour in terms of its relative amount of red, green
and blue light. So a 0 means that color channel is off, a value of 127 indicates half
brightness and a value of 255 full brightness.

The main loop waits for a button press and then adds one to the color index. As
long as that is within the bounds of the colors list, set_color is called to change the
brightness of the three LED channels.

The Electronics

An RGB LED is actually three LEDs in one package – one red, one green and one
blue. Given that LEDs have two legs each you might expect the package to have
six legs, but actually it just has 4. That's because all the negative ends of the LEDs
are connected to the same pin on the package (the longest leg).

Each LED channel must have its own resistor to limit the current.

The push button connects Pico pin 12 to GND (0V) when the button is pressed.
This is what is detected in the Python code. By default, the pin is 'pulled-up' to 3.3V,
and so reads as a value of 1 unless the switch is pressed to force the pin to 0V.

Page 20

PROJECT 4. TOUCH SWITCH
This project builds on Project 3, but instead of switching between colors it
demonstrates the principal of a touch switch, turning the LED green when the
sensor is touched.

Step 1. Find the things you need

For this project, you will need the following items:

● Two 470Ω resistors (yellow, violet, brown stripes)
● One 4.7MΩ resistor (yellow, violet, green stripes)
● An RGB LED
● Two jumper wires
● A small area of metal cooking foil (optional)

Page 21

Step 2. Build the breadboard

To adapt the breadboard
for this project after
building Project 3, first
remove the push switch
and the leftmost resistor
(we don't need the blue
LED channel) and the
jumper wires from the left-
hand side of the
breadboard.

Next add in the 4.7MΩ
resistor and wires as
shown here. Note that the
RGB LED's GND
connection now comes
from a different pin on the
Pico. All of the GND pins
on the Pico are actually
connected together and
can be used
interchangeably.

One end of the orange
jumper wire is connected to
row 19 on the left (GP14) and the other end will eventually be connected to our
metal foil sensor.

Step 3. Run the Program

Load and run the program called 04_touch.py. As you touch the bare end of the
sensing wire (jumper wire from row 19), the LED should change color from red to
green. If you watch the Thonny Shell, you will see a stream of readings. Try
touching the sensing wire and you should see the numbers increase. You may need
to change the value of the variable sense_threshold from 100 to something
between the values you see when not touching versus touching.

Page 22

Step 4. Make the Sensor Pad

You can make the touch sensor more sensitive by increasing the area. If you have
some cooking foil, try folding it in half twice and trapping the loose end of the
sensing lead in a fold in the foil.

You should find that if you do this, you can even hide the foil behind paper, card or
plastic and the sensor will still detect touches.

CapSense

This project uses a technique called capsense, that relies on the fact that when you
turn on a digital output that is connected to a digital input by a high value resistor (in
our case 4.7MΩ – 4.7 million ohms) there is a delay before the input follows the
output crossing the threshold where it counts as a digital high.

The time of this lag (t in the diagram) is influenced by the presence of a conductive
element (such as a finger or hand) with a very high resistance path back to the
Pico. So if you touch or even hold your hand very close to the sensor pad, the delay
will increase. By measuring this delay, you can detect when the pad is being
touched.

Page 23

The Code for Project 4

Here is the code for Project 4.

from machine import Pin
from utime import sleep, ticks_us

red_ch = Pin(16, Pin.OUT)
green_ch = Pin(17, Pin.OUT)

out_pin = Pin(8, Pin.OUT)
in_pin = Pin(14, Pin.IN)

sense_threshold = 100

def cap_sense_value():
 total = 0
 for i in range(20):
 out_pin.high()
 t0 = ticks_us()
 while in_pin.value() == 0:
 pass
 t1 = ticks_us()
 t = t1 - t0
 out_pin.low()
 sleep(0.01) # allow plenty of time for
 #in_pin to go to 0V
 total += t
 return total / 20

while True:
 value = cap_sense_value()
 print(value)
 if value >= sense_threshold:
 red_ch.low()
 green_ch.high()
 else:
 red_ch.high()
 green_ch.low()

Most of the work takes place in the function cap_sense_value. This function actually
takes the average of 20 capsense readings for better reliability. To take each of
these readings, the output pin is set high and the current time, as a value in
microseconds, recorded in the variable t0. The while loop then waits until the input
pin catches up with the output pin and becomes high. At this point, the time is
recorded again (into the variable t1) and the delay calculated as the difference

Page 24

between t1 and t0.

The Electronics

The schematic diagram for this project shows how the 4.7MΩ resistor is connected
between the output and input pins (GP8 and GP14).

Page 25

PROJECT 5. SERVOMOTOR CONTROL
This is the first of the projects to use the servomotor supplied with the kit. In this
project you will be able to move the arm of the servomotor left or right, using the two
small push buttons.

Step 1. Find the parts you need

For this project, you will need the following items:

● Servomotor
● An arm for the servomotor
● A 470Ω resistor
● Two push switches
● Seven jumper wires

Step 2. Build the breadboard.

Wire up the breadboard and connect it to your Pico using the diagram below as a
guide.

To connect the servomotor, use jumper wires. The red lead of the servomotor
should be connected to USB 5V on the Pico, the brown lead of the servomotor to
GND and the orange lead to row 26 as shown.

Page 26

Insert the switches carefully – note that they share one row of connectors on the
breadboard.

Step 3. Attach a servomotor arm

The servomotor is supplied with a little bag of arms that fit over the cogged drive
shaft of the servo motor. Select the one shown below and push it onto the drive
shaft. It doesn't matter at what angle you attach it, as you are going to be adjusting
it later anyway.

Step 4. Running the Program

Open the file 05_servo_test.py in Thonny and run it. You should find that, when you
press one button, the servo arm rotates one way; and when you press the other
button it should rotate the other. You will also see the current angle printed out in
the Shell.

If the servo arm is not free to move throughout its range you can adjust the position
of the arm by taking it off and repositioning it. To get it at the straight up 90 degree
position, Stop the program and then run it again. This will start the servo arm at the
middle 90 degree position. So, without pressing either button, carefully take the arm
off and reposition it so it is pointing straight up as shown below. Note that because
of the cogged drive shaft, you probably won't be able to get the arm at exactly the
90 degree position.

Page 27

Use the up and down buttons and make a note of good values for min_angle and
max_angle so that the left and right end positions are evenly either side of the
central position. A little counter-intuitively, the position of the arm is such that an
angle of 0 is over to the right and 180 to the left.

The Code for Project 5

Servomotors are controlled by a series of pulses. We are going to generate those
pulses using PWM (see Appendix D). For more details of how servomotors work,
see Appendix E.

You will find the code for this project in 05_servo_test.py

from machine import Pin, PWM
from utime import sleep

button_up = Pin(14, Pin.IN, Pin.PULL_UP)
button_down = Pin(15, Pin.IN, Pin.PULL_UP)

servo = PWM(Pin(16))
servo.freq(50) # pulse every 20ms

def set_angle(angle, min_pulse_us=500, max_pulse_us=2500):
 us_per_degree = (max_pulse_us - min_pulse_us) / 180
 pulse_us = us_per_degree * angle + min_pulse_us
 # duty 0 to 1023. At 50Hz,
 # each duty_point is 20000/65535 = 0.305 µs/duty_point
 duty = int(pulse_us / 0.305)
 print(angle)
 servo.duty_u16(duty)

angle = 90
set_angle(90)
min_angle = 10

Page 28

max_angle = 160

while True:
 if button_up.value() == 0 and angle <= max_angle:
 angle += 1
 set_angle(angle)
 sleep(0.01)
 elif button_down.value() == 0 and angle > min_angle:
 angle -= 1
 set_angle(angle)
 sleep(0.01)

The PWM frequency is set to 50Hz for this project, as that is the frequency of
pulses that the servomotor expects.

Most of the work in generating the pulses to control the servomotor is contained in
the function set_angle. This means that, if you want to create your own projects
using servomotors, you can just copy this function.

The most important parameter for set_angle is the angle that you want to set the
servomotor's arm to, which should be between 0 and 180. The other parameters set
the minimum and maximum pulse width, that you should not need to change these
unless you have an unusual servomotor. The function starts by working out the
number of microseconds of pulse which will be required for each degree of angle. It
then calculates the total pulse length in microseconds for the angle required.
Finally, it calculates the duty (the PWM value) between 0 and 65535 and uses
servo.duty_u16 to set that pulse width on the servomotor's control pin.

The main while loop waits for button presses and changes the angle accordingly.
Since many servomotors can't manage the full 180 degrees, the range of angle set
is limited to between 10 and 170. If you find that the servomotor judders badly at
one end of its travel, you may need to adjust min_angle or max_angle.

The Electronics

The new part of this project is the servomotor.

Page 29

Although the servomotor included in the kit will work at 3V, more power is available
for it if it is powered from the 5V available over the USB lead. The control
connection to the servo is connected via a 470Ω resistor. While not strictly
necessary this does mean that if the servomotor tries to draw too much current from
the GPIO pin, the Pico will not be damaged.

Page 30

PROJECT 6. THERMOMETER

This project uses a servomotor to indicate the temperature, as measured by the
temperature sensor built into the Pico's processor. You don't have to put it in a box
like this but, if you do, it looks quite smart.

Step 1. Find the parts you need

For this project, you will need the following items:

● Servomotor
● An arm for the servomotor
● A 470Ω resistor (yellow, violet and brown stripes)
● Three jumper wires
● Small brown box (like the one this kit came in)
● Scissors and paper glue
● Craft knife

Page 31

Step 2. Build the breadboard.

Wire up the breadboard and connect it to your Raspberry Pi using the diagram
below as a guide.

If you have just made Project 5, then all you need to do is pull out the switches and
jumper wires from the left of the board, leaving just the servomotor and resistor.

Step 3. Running the Program

Before making an enclosure for this project, it's worth making sure everything
works. So, run the program 06_thermometer.py and the servo arm should jump to
some position. Try putting your finger on the Pico's processor -- the servo arm
should move to a new position as the Pico warms up.

Page 32

When you take your finger off the Pico's processor chip, you should see the servo
arm move back towards its original position.

Step 4. Making an Enclosure

We can see that our thermometer is changing as it warms and cools but, without
some kind of scale, we can't use it to tell us the temperature.

We can make an enclosure using the cardboard box that this kit comes in, or any
other smallish box you might have. If you have access to a printer, you can print out
one of the scales provided to glue to the box. The file for a Celsius scale is called
scale_temp_c.pdf and there is also a Fahrenheit version called scale_temp_f.pdf.
You will also find these scales in Appendix F.

Page 33

Start by printing out the scale you want to use and cutting out the outline of the
temperature scale with scissors. Then stick it onto the card with paper glue (such as
PVA).

Allow the glue on the paper scale to completely dry and then using a craft knife,
carefully cut out the rectangle where the servo motor is going to go.

WARNING: Do NOT use a craft knife without adult supervision. If you are an
adult, that's fine, you don't need to find another adult, but do be careful, they
are nasty sharp things!

Page 34

We are going to mount the servomotor on the outside of the box, so thread the
servomotor's lead through the hole from the front and push the servomotor into
place with the shaft to the right. The servomotor will fit quite tightly in the slot,
holding it in position.

Page 35

If you want to, find a waste piece of cardboard or other material and make a pointer
to glue to the servomotor arm as shown in the photograph on the next page.

Page 36

Put the breadboard inside the body of the box and reconnect the servomotor. Then
make some marks on the side of the box where you will need to make a hole for the
USB lead to enter the box.

Cut out a hole for the USB lead and trim the flap on the side of the lid, so that it will
shut when the USB lead is through the hole.

Page 37

Connect the lead to your computer or a USB power supply and your thermometer

Page 38

should swing into life. Remember, if you are not running the project code from
Thonny, you will need to save it onto the Pico as main.py as described on Page 12.

The Code for Project 6

This project uses the same code to control the servomotor as project 5, but in this
case, the angle set is calculated from the temperature rather than bing controlled by
two buttons.

from machine import Pin, PWM, ADC
from utime import sleep

servo = PWM(Pin(16))
servo.freq(50) # pulse every 20ms

temp_sensor = ADC(4)
points_per_volt = 3.3 / 65535

def read_temp_c():
 reading = temp_sensor.read_u16() * points_per_volt
 temp_c = 27 - (reading - 0.706)/0.001721
 return temp_c

def set_angle(angle, min_pulse_us=500, max_pulse_us=2500):
 us_per_degree = (max_pulse_us - min_pulse_us) / 180
 pulse_us = us_per_degree * angle + min_pulse_us
 # duty 0 to 1023. At 50Hz,
 #each duty_point is 20000/65535 = 0.305 µs/duty_point
 duty = int(pulse_us / 0.305)
 servo.duty_u16(duty)

angle = 90
set_angle(90)
min_angle = 10
max_angle = 160
min_temp = 0
max_temp = 50
angle_per_degree_c = (max_angle - min_angle) /

(max_temp - min_temp)

while True:
 temp_c = read_temp_c()
 print(temp_c)
 angle = min_angle + (temp_c - min_temp)

* angle_per_degree_c
 if angle >= min_angle and angle <= max_angle:
 set_angle(max_angle - angle)

Page 39

 sleep(0.5)

The Pico's internal temperature sensor is connected to ADC 4, an internal pin that is
not connected to any of the Pico's header pins. The analog reading that we take
from this pin is first converted to a voltage (held in the variable reading) and then
that voltage is converted to a temperature in degrees C using the formula:

temp_c = 27 - (reading – 0.706)/0.001721

The numbers in this formula are rather complicated, but he relationship between
temperature and voltage of the Pico's internal sensor is something that is defined by
the the Pico's designers.

The while loop of the program is mostly concerned with converting the temperature
value into an angle to which the servomotor should be set, and then setting the
servomotor to that angle so long as it is within the range of allowed angles.

Page 40

PROJECT 7. THERMOMETER PLUS
This project expands on the thermometer built in Project 6 to include a buzzer that
will sound if the temperature reaches a certain threshold (25 °C by default). If you
boxed Project 6, then you will need to open up the box and add a few components
to the breadboard.

Step 1. Find the parts you need

For this project, you will need the following items in addition to those you used to
make project 6.

● A buzzer
● A second 470Ω resistor (yellow, violet and brown stripes)
● An extra jumper wire

Step 2. Build the breadboard.

If you haven't done so, follow the instructions for building Project 6 and then return
here.

Page 41

Add the buzzer and extra resistor as shown. The orientation of the buzzer does not
matter as it can be placed either way around.

Step 3. Running the Program

Run the program 07_thermometer_plus.py. Warm the processor up by putting your
finger on it. Once the temperature gets above 25 °C, the buzzer should sound. If
you can't get the temperature above the default value, you may need to edit the
program and change the set_temp variable to something lower (see the Code
section below if you are unsure how to do this).

The Code for Project 7

The code for this project is similar to Project 6, as the thermometer part of it is
unchanged. For an explanation of how the thermometer works, see Project 6.

from machine import Pin, PWM, ADC, Timer
from utime import sleep

set_temp = 25

buzzerA = Pin(15, Pin.OUT)
buzzerA.high()
buzzerB = Pin(14, Pin.OUT)
buzzerB.low()
buzz = False

servo = PWM(Pin(16))
servo.freq(50) # pulse every 20ms

temp_sensor = ADC(4)
points_per_volt = 3.3 / 65535

def tick(timer):
 if buzz:
 buzzerA.toggle()
 buzzerB.toggle()

def read_temp_c():
 reading = temp_sensor.read_u16() * points_per_volt
 temp_c = 27 - (reading - 0.706)/0.001721
 return temp_c

def set_angle(angle, min_pulse_us=500, max_pulse_us=2500):
 us_per_degree = (max_pulse_us - min_pulse_us) / 180

Page 42

 pulse_us = us_per_degree * angle + min_pulse_us
 duty = int(pulse_us / 0.305)
 servo.duty_u16(duty)

angle = 90
set_angle(90)
min_angle = 10
max_angle = 160
min_temp = 0
max_temp = 50
angle_per_degree_c = (max_angle - min_angle) / (max_temp -
min_temp)

Timer().init(freq=1200, callback=tick)

while True:
 temp_c = read_temp_c()
 angle = min_angle + (temp_c - min_temp) *
angle_per_degree_c
 if angle >= min_angle and angle <= max_angle:
 set_angle(max_angle - angle)
 buzz = (temp_c > set_temp)
 print(temp_c)
 sleep(0.5)

The variable at the beginning of the program, set_temp, defines the threshold
temperature above which the buzzer will sound. This is the variable to change if you
can't get the thermistor up to 25 °C or if you live somewhere warm.

The main difference between this program and the one from Project 6 is the code to
control the buzzer. The buzzing is accomplished using two pins (buzzerA and
buzzerB) to drive the piezo buzzer. When one pin is high, the other is low and vice-
versa.

The function tick is called by a timer at 1200Hz (1200 times a second). The function
tick will only actually flip the pins if the value of the variable buzz is True.
Something, which is set in the loop as a result of comparing temp_c with set_temp.

The Electronics

You could drive the buzzer by connecting one of its pins to ground and make the
other pin oscillate, but this would be much quieter than the arrangement here,
where the two pins drive the buzzer in opposite directions through the whole of the
cycle.

Page 43

Page 44

PROJECT 8. LIGHT METER
In this project, a special type of transistor called a phototransistor is used to
measure the light level. The level is indicated using the servomotor, just like in the
thermometer project. There is a scale supplied for the light level from 0 to 100, that
can be printed out from the file scale_light.pdf if you want to box the project.

Step 1. Find the parts you need

For this project, you will need the following items in addition to those you used to
make project 6.

● A phototransistor
● A 1kΩ resistor (brown, black and red stripes)

Page 45

Step 2. Build the breadboard.

Follow the instructions for project 6 and then add the phototransistor and 1kΩ
resistor. Note, the phototransistor must be placed with the longer lead to row 7 of
the breadboard.

Step 3. Running the Program

Unlike the thermometer, which has well defined units of temperature, the scale used
for the light level is just a number between 0 and 100.

Load the program 08_light_meter.py into Thonny and run it.

You should find that the light level changes when you place your hand over the
phototransistor or when you shine a torch on it.

Step 4. Boxing the Project

If you boxed Project 6, then you can follow the same process here, the only
differences being that you will need to use the light scale from scale_light.pdf (or
Appendix F) and also make a hole in the box for the phototransistor to poke
through.

Page 46

To make the hole in the right place, you may need to fix the breadboard in place
and then as you close up the lid, make a pencil mark where the phototransistor
meets the lid and make a hole there, so that as the lid closes the phototransistor
pushes through the hole.

You can make the hole using a screwdriver or other implement about the same
diameter as the phototransistor.

The Code for Project 8

Here is the code for Project 8.

from machine import ADC, PWM, Pin
from utime import sleep
from math import sqrt

servo = PWM(Pin(16))
servo.freq(50) # pulse every 20ms

light_sensor = ADC(28)

Page 47

dark_reading = 200
scale_factor = 2.5

def set_angle(angle, min_pulse_us=500, max_pulse_us=2500):
 us_per_degree = (max_pulse_us - min_pulse_us) / 180
 pulse_us = us_per_degree * angle + min_pulse_us
 # duty 0 to 1023. At 50Hz, each duty_point
 # is 20000/65535 = 0.305 µs/duty_point
 duty = int(pulse_us / 0.305)
 servo.duty_u16(duty)

def read_light():
 reading = light_sensor.read_u16()
 # print(reading)
 percent = int(sqrt(reading - dark_reading) /
 scale_factor)
 if percent < 0:
 percent = 0
 elif percent > 100:
 percent = 100
 return (percent)

min_angle = 10
max_angle = 160
min_light = 0
max_light = 100
angle_per_percent = (max_angle - min_angle) /
 (max_light - min_light)

while True:
 light_level = read_light()
 print(light_level)
 angle = min_angle + (light_level - min_light) *
 angle_per_percent
 set_angle(max_angle - angle)
 sleep(0.2)

In a similar way to Projects 6 and 7, ADC is used to define GP28 as an analog
input. Note that only the external pins GP26, 27 and 28 can be used this way, along
with the internal pin 4 that is connected to the Pico's built-in temperature sensor.

The variable dark_reading should be set to the reading you get when the
phototransistor is completely covered. You should not need to change this.
However, if you want to check it, uncomment the print statement in the read_light
function and make a note of the values being displayed in the Shell.

A second variable (scale_factor) determines the sensitivity of the meter. Increase

Page 48

this if you want to make the meter more sensitive.

Reading the light level takes place in the function read_light. The analog value from
GP28 is read into the variable reading. Human perception of light level is not linear
-- a bright sunny day is not simply a bit brighter than a normally lit room (as it seems
to us) but is actually hundreds of times brighter. Our eyes are extremely good at
adjusting to a very wide range of light levels. To compensate for this effect, so that
our light meter is not heavily biased to bright light, the square root of the reading is
taken after subtracting the value of dark_reading. Finally, the function makes sure
that this arithmetic has not taken the light reading level outside of the range 0 to
100.

The Electronics

A phototransistor allows more current to flow through as more light falls on it. By
using it with a fixed resistor (R2), this current results in a different voltage at GP28,
which can be measured and used to provide an indication of the light level.

Page 49

PROJECT 9. FADER
This project uses a component called a variable resistor (or potentiometer or just
pot) to control the brightness of the blue channel of the RGB LED. You will find
variable resistors like this often used, say as a volume control on a radio or
amplifier.

Step 1. Find the parts you need

To make this project, you will need need:

● A 470Ω resistor (yellow, violet and brown) stripes)
● The RGB LED
● The pot
● Four jumper wires

Step 2. Build the breadboard

When assembling the circuit,
make sure that the longest leg
of the RGB LED goes to the
breadboard column marked
with a blue line (the negative
bus).

The pot is positioned with the
pins aligned vertically on the
breadboard from rows 28 to 30.
It does not matter which way up
the pot goes.

Remember that the breadboard
holes on the side of the RGB
LED are not connected to those
near the pot.

Step 3. Running the
Program

Open and run the program
09_fader.py in Thonny. When
you turn the knob on the pot
you will see the brightness of
the LED change from off to full brightness.

Page 50

The Code for Project 9

The code for this is very straightforward. An analog reading is made from pin 28
which results in a number between 0 and 65535 depending on the position of the
pot's knob. After a delay of 1/10 of a second, which allows the ADC time to recover,
the duty of the blue_ch PWM is set to that same value.

The value is also printed into the Python Shell as a way to show how the readings
change when you change the position of the pot.

from machine import Pin, ADC, PWM
from utime import sleep

blue_ch = PWM(Pin(15))
pot = ADC(28)
blue_ch.freq(1000)

while True:
 reading = pot.read_u16()
 sleep(0.1) # recovery time for ADC
 print(reading)
 blue_ch.duty_u16(reading)

The Electronics

The pot (or variable resistor, if you prefer) has three legs. Two legs are effectively at
the end of a resistor with a resistance of 10kΩ, and the third leg is attached to a
slider that moves across the variable resistor. As the slider moves towards the 3.3V
end of the pot, its voltage will get closer to 3.3V; when the slider is close to the GND
end it will be closer to 0V and, guess what, in its center position it will be half way
between 0 and 3.3V at about 1.65V.

Page 51

PROJECT 10. LIE DETECTOR
This is another project that makes use of the pot and RGB LED, but this time just
the red and green channels of the LED. When your test subject is holding the metal
ends of the green and yellow jumper wires, the LED will indicate whether they are
lying or not (well kind of). The pot is used to adjust the lie detector.

Step 1. Find the parts you need

This project builds on Project 9. The only extra components you need is a second
470Ω resistor and a 4.7MΩ resistor (stripes yellow, violet and green).

Page 52

Step 2. Build the breadboard

If you have just made
Project 9, then you can
leave the RGB LED and pot
in the same place, but most
of the jumper wires and
components are in different
places. Note that the resistor
just to the right of the Pico is
the 4.7MΩ resistor.

Step 3. Running the
Program

Open and run the program
10_lie_detector.py in
Thonny. This is a project that
you really need two people
for – an interrogator and a
subject.

With the subject tightly
pinching the metal ends of
the green and yellow jumper
wires, the interrogator
should adjust the pot until
the LED goes red and then dial it back a tiny amount until the LED is just green.
The interrogator should then ask the subject questions and, if the LED goes red,
then this might indicate that the subject is telling lies.

The project uses something called GSR (Galvanic Skin Response). This is just a
fancy way of saying the electrical resistance of your skin changes. When you sweat,
your skin resistance decreases, and it is this resistance that the lie detector
measures.

This method is not at all reliable and you will probably find that you can influence
the lie detector in both directions just by how hard you pinch the metal ends of the
jumper wires. It's fun though!

The Code for Project 10

Here is the code for Project 10.

from machine import Pin, ADC
from utime import sleep

Page 53

red_ch = Pin(16, Pin.OUT)
green_ch = Pin(17, Pin.OUT)
pot = ADC(28)
subject = ADC(27)

while True:
 threshold = pot.read_u16()
 sleep(0.1) # recovery time for ADC
 gsr = subject.read_u16()
 sleep(0.1) # recovery time for ADC
 print("threshold=" + str(threshold) + " gsr=" + str(gsr))
 if gsr > threshold:
 red_ch.high()
 green_ch.low()
 else:
 red_ch.low()
 green_ch.high()

In the while loop, the position of the pot's knob is read and stored in the variable
threshold, and then the voltage at the skin resistance sensor is read and stored in
the variable gsr. These two values are compared and the RGB LED set to green if
the skin resistance of the subject is greater than the threshold, otherwise the LED is
set to red.

The Electronics

The circuit is very similar to Project 9, except that as well as the variable resistor R4
we have R5, and the variable resistance of the test subjects skin acting as a pot,
providing a voltage to be measured at pin GP27.

Page 54

Page 55

APPENDIX A. TROUBLESHOOTING

Problem: An LED is not working

Solution: Check that the LED is the right way around. The long leg is the positive
end and the short leg is the negative end. Make sure that the negative (shorter) leg
is connected to GND.

Problem: The project is not working.

Solution: Carefully check that the legs of each components are not touching each
other. Check whether all of the component legs are properly pushed into the
breadboard, since sometimes it can be difficult to seat the wire into the breadboard
hole properly. Make sure that all of the leads are going to the correct pins on the
Pico and to the correct holes on the board. Make sure that all LEDs are the correct
way around. Double check that all resistors have the correct value (color stripes).
Make sure that you are running the correct program for the project you have set up.

Support

For the most up-to-date help on this kit, see http://monkmakes.com/pico_bb or
contact MonkMakes support at support@monkmakes.com

Page 56

mailto:support@monkmakes.com

APPENDIX B. HOW A BREADBOARD WORKS
All the projects in this kit are built on the breadboard into which the Pico and
electronic components are fitted.

If you connect the projects in exactly the same way as the diagrams then they
should work fine. However, it can be quite tedious to use exactly the same holes on
the breadboard, so it is worth understanding how the holes are all connected.

The power rails (or busses) on the board are labelled around the outside - two sets
of outer rails labelled + and –, and the center holes labelled using numbers 1-30 for
rows and a-j for columns.

The bulk of the board in the center is connected horizontally. Row 1 is not
connected to row 2, but holes 1a, 1b, 1c, 1d and 1e are all connected. The break in
the very center of the board also breaks the connections between rows. For
example, hole 1e is not connected to 1f. Each row follows the same pattern.

Again, the rows are on the right hand side of the board (1f-1j) are connected
together.

Page 57

If you were to take your breadboard apart, here's what it would look like from the
back. You can see the metal clips connecting each section together inside the
board.

To use the board, firmly push the metal leads of the components or wires into the
holes of the board. Make sure that the leads are in the center of the holes as they
can often get stuck on the sides.

The component leads often need to be bent to fit in the right holes, but be careful
not to bend the leads too far (especially on the components with shorter leads such
as the buzzer) as they can snap off.

Page 58

APPENDIX C. THE RESISTOR COLOR CODE
Resistors have little stripes on them that tell you
their value. Here's how to read them.

Each color has a value.

There will generally be three colored bands
together starting at one end of the resistor, a
gap, and then a single band at one end of the
resistor. The single band at the far side indicates
the accuracy of the resistor value.

The first band is the first digit, the second the
second digit and the third ‘multiplier’ band is how
many zeros to put after the first two digits.

The Gold and Silver stripes at the far end of the
resistor are used to indicate how accurate the
resistor is, so Gold is +-5% and Silver is +-10%.
In other words a Gold (5%) 1000Ω (1kΩ) resistor
could have an actual resistance between 950Ω
and 1050Ω.

5% is plenty accurate enough for the projects in
this kit.

Example:

Red = 2, violet = 7 and brown = 1, so the value is 27 followed by 1 zero or 470Ω
and gold indicates 5% tollerance.

Page 59

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Gray 8

White 9

Gold 5%

Silver 10%

APPENDIX D. PULSE WIDTH MODULATION
Pulse Width Modulation (PWM) is a technique that allows you to control the
brightness of an LED, or the speed of a motor, by using pulses. In PWM, the pulses
always arrive with the same frequency, but the duration of each pulse is varied.

Using the example of an LED, a short pulse will result in the LED being dim. As the
on time of the pulse increases, so does the brightness of the LED until, when the
pulse lasts all the way to the time the next pulse is due, the LED will be on all the
time.

In the case of using PWM with an LED, the LED can turn on and off very quickly,
and so the LED will actually be flashing but at a frequency too high for you to be
able to see it.

Page 60

APPENDIX E. SERVOMOTORS
Despite their small size, servomotors are surprisingly complex little machines,
controlled using signal pulses. Here's a diagram of how a servo motor works.

A DC motor (normal motor that can rotate continuously) is attached to a gear box,
which drives the servo arm, but is also coupled to a position sensor (a pot) that
provides feedback to an electronic control circuit that keeps the servo arm at the
correct angle.

Control of the position uses a series of pulses arriving every 20 milliseconds.

The length of each of these pulses will determine the position of the servo arm. So
a short pulse of just 0.5 milliseconds will put the arm at one end of its travel. A pulse
of 1.5 milliseconds will put the arm at its center position and a maximum pulse
length of 2.5 milliseconds will put it at the other end of its travel.

Page 61

APPENDIX F. SCALES
Feel free to cut out these scales for use on Projects 6 to 8. You will also find these
in the code downloads, where the files are called scale_temp_c.pdf
temp_scale_f.pdf and scale_light.pdf. There are also vector graphics versions of the
files there as well, if you want to customise them.

Temperature (degrees C)

Page 62

Temperature (degrees F)

Page 63

Light

Page 64

BOOKS
This kit gives you a good set of parts to go off and start developing your own
projects. You may find that you want to learn more about electronics. These books
were written by the designer of this kit.

Page 65

OTHER KITS
As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your
projects.

Find out more, as well as where to buy here: https://monkmakes.com you can also
follow MonkMakes on Twitter @monkmakes.

https://monkmakes.com/pico_proto

https://monkmakes.com/pmon

https://monkmakes.com/mosfetti

https://monkmakes.com/illuminata

Page 66

https://monkmakes.com/mosfetti
https://monkmakes.com/pmon
https://monkmakes.com/pico_proto
https://monkmakes.com/

Page 67

RASPBERRY PI PICO PINOUT

Pins marked with a dot are used in this kit.

Page 68

	Parts
	The Raspberry Pi Pico
	Setting up
	Soldering header pins
	Thonny
	Downloading the Project Software
	Powering the Projects

	Project 1. Make an LED Blink
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Run the Program
	The Code for Project 1
	Things to Try
	The Electronics

	Project 2. Make 2 LEDs Blink
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Run the Program
	The Code for Project 2
	The Electronics

	Project 3. RGB Color Display
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Run the Program
	The Code for Project 3
	The Electronics

	Project 4. Touch Switch
	Step 1. Find the things you need
	Step 2. Build the breadboard
	Step 3. Run the Program
	Step 4. Make the Sensor Pad
	CapSense
	The Code for Project 4
	The Electronics

	Project 5. Servomotor Control
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Attach a servomotor arm
	Step 4. Running the Program
	The Code for Project 5
	The Electronics

	Project 6. Thermometer
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Running the Program
	Step 4. Making an Enclosure
	The Code for Project 6

	Project 7. Thermometer Plus
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Running the Program
	The Code for Project 7
	The Electronics

	Project 8. Light Meter
	Step 1. Find the parts you need
	Step 2. Build the breadboard.
	Step 3. Running the Program
	Step 4. Boxing the Project
	The Code for Project 8
	The Electronics

	Project 9. Fader
	Step 1. Find the parts you need
	Step 2. Build the breadboard
	Step 3. Running the Program
	The Code for Project 9
	The Electronics

	Project 10. Lie Detector
	Step 1. Find the parts you need
	Step 2. Build the breadboard
	Step 3. Running the Program
	The Code for Project 10
	The Electronics

	Appendix A. Troubleshooting
	Support

	Appendix B. How a Breadboard Works
	Appendix C. The Resistor Color Code
	Appendix F. Scales
	Temperature (degrees C)
	Temperature (degrees F)
	Light

	Raspberry Pi Pico Pinout

