
Instructions:
DUAL RELAY

This two channel relay module is ideal for switching low voltage AC and DC
loads. It is compatible with 3.3V and 5V microcontroller boards such as
Arduino, Raspberry Pi Pico and ESP32.

The board features:
• 2 x opto-isolated AC/DC solid state relays
• 16V maximum switching voltage
• 2A peak current, 1.5A continuous
• Indicator LEDs for each relay
• screw-terminals and header pins supplied (soldering required)
• Downloadable instruction booklet

Note that screw-terminals and header pins are supplied unsoldered, so you will
need a soldering iron and solder.

WARNING
This product is for switching low voltage DC only. Under no circumstances
should it be connected to AC.

Instructions version 1a.

TABLE OF CONTENTS
Warning...1
Assembly ..3
Using the Dual Relay...4
Downloading the Examples...5
Raspberry Pi Pico..7
ESP32..11
Arduino..14
Using Solid State Relays...18
Warning: Low Voltage ONLY..18
Pulse Width Modulation..20
Troubleshooting...21
MonkMakes...22
Books...23

Page 2

ASSEMBLY
The Dual Relay comes as a kit, with all the surface mount components already
soldered onto the PCB. You just have to solder on the header pins and screw
terminals. Some projects may be better with leads soldered directly to the pads.

Solder the header pins first, as they
are the lowest. Put the pin headers
in place then flip the board over
onto its back, so that the weight of
the PCB holds them in position and
solder the pins.

Next clip the two screw-terminals
together. If you look
closely they have
grooves in the sides
that let them lock
together.

Now, you can solder the screw
terminals into place, being careful to
ensure that the part of the screw
terminal, into which the wire fits, is
towards the outside of the board.

If this is the first time you have
soldered, take the time to watch a
few video tutorials.

Page 3

USING THE DUAL RELAY
You can think of the Dual Relay as two independent switches controllable from your
favourite microcontroller. You can switch DC loads, such as motors and LED
lighting modules (low-voltage DC only), that use far too much current to be
connected to a GPIO (General Purpose Input Output) pin directly. The Dual Relay is
compatible with any 3V or 5V microcontroller, such as an Arduino, ESP32 or a
Raspberry Pi Pico. You can also connect a Dual Relay to a single-board-computer
with GPIO pins such as a Raspberry Pi 4.

Here's an example of how you might connect a Dual Relay to a Raspberry Pi Pico
2.

The Dual Relay has three control pins (A, B and GND). These pins can be
connected to any microcontroller. Connect GND of the microcontroller to GND of
the Dual Relay and the A and B pins should be connected to GPIO pins of the
microcontroller (either 3.3V or 5V). If you only want to use one of the relays on the
Dual Relay, then you only need to connect the control pin for that relay channel (A
or B).

When either of the A or B pins are set to be high (1.6V up to 5V) the LED for that
channel will light and the corresponding solid-state relay will activate, acting just like
a switch had been closed. Any circuit, connected via the screw-terminal pair for that
relay channel, will be completed.

Page 4

DOWNLOADING THE EXAMPLES
To download the ZIP archive containing example programs for all platforms, visit
https://github.com/monkmakes/dual_relay

Click on the Code button, select Download ZIP and then extract the downloaded
ZIP archive.

If you are familiar with git and would prefer to download the examples using the
command line, then you can do so with the command:

$ git clone https://github.com/monkmakes/dual_relay.git

With the extracted archive, you will find an examples folder that contains the
following folders:

• raspberry_pi_pico – MicroPython examples for the Raspberry Pi Pico

• arduino – Examples for Arduino, and other boards that can be
programmed with the Arduino IDE

Page 5

• esp32 – ESP32 MicroPython examples

If you are using an ESP32 or Raspberry Pi Pico, then we recommend using the
Thonny (https://thonny.org/) editor and the MicroPython programming language.
Arduino users will probably want to use the Arduino IDE (https://www.arduino.cc/)
and C programming language.

Since turning one of the relays of the Dual Relay on or off is just a matter of turning
a microcontroller's digital output pin or or off, you will find many tutorials on
controlling GPIO pins for your chosen microcontroller board.

Page 6

https://thonny.org/

RASPBERRY PI PICO

You will need

To build this example project you will need the following items:

• A MonkMakes Dual Relay Board

• A Raspberry Pi Pico

• Solderless Breadboard. The MonkMakes Breadboard for Pico has the Pico
pinout printed on it, making pin identification a lot easier
(https://monkmakes.com/pico_bb.html).

• 3 x female to male jumper wires

• An LED lamp module (12V). We used a 6W COB lighting strip intended for
use in cars.

• 12V power supply

Note that you can also try out the example project without any load attached to the
relay outputs because the indicator LED on the Dual Relay will light up when the
Relay is on.

Wiring – Raspberry Pi Pico

12V DC should be connected to the positive lead of the LED strip and the Pico
powered from USB. The female to male jumper leads are used to connect the
Pico's GND connection to the Dual Relay's GND and two of the Picos GPIO pins
(16 and 17) are connected to the Dual Relay control pins A and B respectively.

Page 7

https://monkmakes.com/pico_bb.html

The lower of the relay A screw-terminals should be connected to the negative lead
of the 12V power source.

Note that in this example, the relay closes the connection between the LED strip
and the negative side of the 12V supply, but there is no reason which you couldn't
have the relay switch between the positive side of the 12V supply and the LED strip.

Example Software

In the raspberry_pi_pico folder of the examples folder that you downloaded (see
Page 5) you will find the program: blink.py

Turning Lamps on and off

Open in Thonny (https://thonny.org/) and run it on your Pico. You should see the
two Relay indicator LEDs light up in an alternating manner every second. If you
have wired-up a load and power supply to one of the relays output (such as the 12V
strip-light shown above) then that should turn on and off too.

Page 8

https://thonny.org/

Here is the code for blink.py.

from machine import Pin
from time import sleep

relayA = Pin(17, Pin.OUT)
relayB = Pin(16, Pin.OUT)

while True:
 relayA.on()
 relayB.off()
 sleep(0.5) # pause
 relayA.off()
 relayB.on()
 sleep(0.5)

Each of the two relays is connected with a different control pin of the Pico (17 and
16). The main while loop first turns relay A on and relay B off, pauses for half a
second before reversing the relays so that A is off and B on.

Pulse Width Modulation (PWM)

For a primer on PWM, see page 20.

As well as turning things on and off, the Dual Relay is also capable of Pulse Width
Modulation (PWM). This can be used to control the brightness of a lamp or the
speed of a motor. The example in pwm.py illustrates this, using just Relay A of the
Dual Relay.

from machine import Pin, PWM

relayA = PWM(Pin(14))
relayA.freq(200)

while True:
 brightness_str = input("brightness (0-100):")
 brightness = int(brightness_str)
 if brightness < 0 or brightness > 100:
 print("Brightness between 0 and 100")
 else:
 duty = int(brightness * 655.35)
 relayA.duty_u16(duty)

This time, the control pin (17) is a PWM pin, and the PWM frequency is set to 200
Hz (pulses per second).

Page 9

The program's main loop uses Thonny's Shell area to prompt you to enter a
brightness level between 0 and 100. It then converts the number you type into the
range 0 to 65535 expected by the duty_u16 method.

Try entering numbers and notice the brightness change on the Dual Relay's
indicator LED (A) and if you have an LED lamp attached, on the lamp too.

A value of 0 should turn them off and 100 set them to maximum brightness.

Page 10

ESP32

You will need

To build this example project you will need the following items:

• A MonkMakes Dual Relay Board

• An ESP32 board such as the ESP32 Lite

• Solderless Breadboard.

• 3 x female-to-male jumper wires

• An LED lamp module (12V). We used a 6W COB lighting strip intended for
use in cars.

• 12V power supply

Note that you can also try out the example project without any load attached to the
relay outputs because the indicator LED on the Dual Relay will light up when the
Relay is on.

Wiring – ESP32

The connections between the ESP32 board (in this case an ESP32 Lite) are as
follows:

ESP32 pin Dual Relay Connection Lead Color (in diagram)

G GND Black

14 A Green

12 B Yellow

Page 11

12V DC should be connected to the positive lead of the LED strip and the ESP32
powered from USB. The female-to-male jumper leads are used to connect the
ESP32's GND connection to the Dual Relay's GND and two of the ESP32's GPIO
pins (16 and 17) are connected to the Dual Relay control pins A and B respectively.

The lower of the relay A screw-terminals should be connected to the negative lead
of the 12V power source.

Note that in this example, the relay closes the connection between the LED strip
and the negative side of the 12V supply, but there is no reason which you couldn't
have the relay switch between the positive side of the 12V supply and the LED strip.

Example Software

In the esp32 folder of the examples folder that you downloaded (see Page 5) you
will find the program: blink.py

Turning Lamps on and off

Open the program in Thonny (https://thonny.org/) and run it on your ESP32. You
should see the two Relay indicator LEDs light up in an alternating manner every
second. If you have wired-up a load and power supply to one of the relays output
(such as the 12V strip-light shown above) then that should turn on and off too.

Here is the code for blink.py.

from machine import Pin
from time import sleep

relayA = Pin(14, Pin.OUT)
relayB = Pin(12, Pin.OUT)

while True:
 relayA.on()
 relayB.off()
 sleep(0.5) # pause
 relayA.off()
 relayB.on()
 sleep(0.5)

Each of the two relays is connected with a different control pin of the ESP32 (14
and 12). The main while loop first turns relay A on and relay B off, pauses for half a
second before reversing the relays so that A is off and B on.

Note that any of the ESP32's GPIO pins can be used for PWM.

Page 12

https://thonny.org/

Pulse Width Modulation (PWM)

For a primer on PWM, see page 20.

As well as turning things on and off, the Dual Relay is also capable of Pulse Width
Modulation (PWM). This can be used to control the brightness of a lamp or the
speed of a motor. The example in pwm.py illustrates this, using just Relay A of the
Dual Relay.

from machine import Pin, PWM

relayA = PWM(Pin(14))
relayA.freq(200)

while True:
 brightness_str = input("brightness (0-100):")
 brightness = int(brightness_str)
 if brightness < 0 or brightness > 100:
 print("Brightness between 0 and 100")
 else:
 duty = int(brightness * 655.35)
 relayA.duty_u16(duty)

This time, the control pin (14) is a PWM pin, and the PWM frequency is set to 200
Hz (pulses per second).

The program's main loop uses Thonny's Shell area to prompt you to enter a
brightness level between 0 and 100. It then converts the number you type into the
range 0 to 65535 expected by the duty_u16 method.

Try entering numbers and notice the brightness change on the Dual Relay's
indicator LED (A) and if you have an LED lamp attached, on the lamp too.

A value of 0 should turn them off and 100 set them to maximum brightness.

Page 13

ARDUINO

You will need

To build this example project you will need the following items:

• A MonkMakes Dual Relay Board

• An Arduino Uno board

• 3 x female to male jumper wires

• An LED lamp module (12V). We used a 6W COB lighting strip intended for
use in cars.

• 12V power supply

Note that you can also try out the example project without any load attached to the
relay outputs because the indicator LED on the Dual Relay will light up when the
Relay is on.

Wiring – Arduino

Female-to-male header wires can be used to connect the Arduino directly to the
Dual Relay. The connections are:

Arduino pin Dual Relay Connection Lead Color (in diagram)

GND GND Black

5 A Green

3 B Yellow

Page 14

12V DC should be connected to the positive lead of the LED strip and the Arduino
powered from USB. The female to male jumper leads are used to connect the
Arduino's GND connection to the Dual Relay's GND and two of the Arduino's GPIO
pins (5 and 3) are connected to the Dual Relay control pins A and B respectively.

The lower of the relay A screw-terminals should be connected to the negative lead
of the 12V power source.

Note that in this example, the relay closes the connection between the LED strip
and the negative side of the 12V supply, but there is no reason which you couldn't
have the relay switch between the positive side of the 12V supply and the LED strip.

Example Software

In the arduino folder of the examples folder that you downloaded (see Page 5) you
will find the sketch: blink.

Turning Lamps on and off

Open the blink sketch in the Arduino IDE and upload it to your board.

You should see the two Relay indicator LEDs light up in an alternating manner
every second. If you have wired-up a load and power supply to one of the relays
output (such as the 12V strip-light shown above) then that should turn on and off

Page 15

too.

Here is the code for blink.py.

const int relayApin = 5;
const int relayBpin = 3;

void setup() {
 pinMode(relayApin, OUTPUT);
 pinMode(relayBpin, OUTPUT);
}

void loop() {
 digitalWrite(relayApin, HIGH);
 digitalWrite(relayBpin, LOW);
 delay(500);
 digitalWrite(relayApin, LOW);
 digitalWrite(relayBpin, HIGH);
 delay(500);
}

Each of the two relays is connected with a different control pin of the Arduino (5 and
3).

The main loop first turns relay A on and relay B off, pauses for half a second
before reversing the relays so that A is off and B on.

Note that on some Arduino's not all pins can be used for PWM.

Pulse Width Modulation (PWM)

For a primer on PWM, see page 20.

As well as turning things on and off, the Dual Relay is also capable of Pulse Width
Modulation (PWM). This can be used to control the brightness of a lamp or the
speed of a motor. The example sketch pwm illustrates this, using just Relay A of the
Dual Relay.

const int relayApin = 5;

void setup() {
 Serial.begin(9600);
 Serial.println("brightness (0-255):");
}

void loop() {
 if (Serial.available()) {
 int brightness = Serial.parseInt();

Page 16

 if (brightness < 0 || brightness > 255) {
 Serial.println("Brightness between 0 and 255");
 }
 else {
 analogWrite(relayApin, brightness);
 Serial.print("Brightness set to: ");
 Serial.println(brightness);
 }
 Serial.println("brightness (0-255):");
 }
}

This time, the control pin (5) is a PWM pin.

The Arduino IDE's Serial Monitor is used to tell the Arduino the brightness. To do
this, open the Serial Monitor.

Make sure that the Serial Monitor is
set to 9600 baud and No line ending.

Try entering numbers and notice the
brightness change on the Dual
Relay's indicator LED (A) and if you
have an LED lamp attached, on the
lamp too.

A value of 0 should turn them off and
100 set them to maximum brightness.
Note that the default PWM frequency
of the Arduino Uno R3 is 976Hz for
pin 5, which is a bit fast for the relay
chips on the Dual Relay. This means
that the strip light may not light at all
until you have entered a value of 50
or more.

Page 17

USING SOLID STATE RELAYS

WARNING: LOW VOLTAGE ONLY

A traditional relay is an
electromechanical device that uses an
electromagnet to actually move a pair
of contacts.

When a current of a few tens of mA
(milliamps) flows through the coil, it
pulls the contacts together making an
electrical connection, just as if you had
flipped a switch.

The important thing here is that there is NO electrical connection between the coil
and the contacts. The contacts are free to operate at a different voltage and switch
a completely different circuit to whatever the coil is controlled by (typically a
microcontroller like the Pico using some extra circuitry).

Electro-mechanical relays are cheap, but switch slowly and require quite a high
current through the coil to activate them. The Dual Relay uses a type of relay called
a solid state relay (SSR). Instead of a coil of wire and contacts, the SSRs used in
the Dual Relay use an LED and phototransistors all contained within a small
package. The LED only needs a few milliamps to switch the phototransistors on,
and is still electrically isolated from the contacts.

Here is a section of the Dual Relay's schematic diagram showing how the SSR is
used.

The SSR behaves just like an electromechanical relay, except that it switches much
faster, and does not have any moving parts in it. The SSR is protected against over-
current by a separate self-resetting polyfuse, that cuts of the current if it exceeds 2A
for more than a few seconds.

Page 18

Switching Inductive Loads

If you plan to use any of the relays to switch inductive loads, such as solenoids or
motors, then there is a risk that 'back EMF' voltage spikes may damage the Dual
Relay.

When driving inductive loads, use a 'flyback' or 'kickback' diode across the terminals
of the solenoid or motor, as shown below. The Dual Relay comes supplied with two
of these, just in-case you need them. Note the stripe on the diode must go to the
positive connection of the motor or solenoid.

Page 19

PULSE WIDTH MODULATION
The SSRs used in the Dual Relay are capable of more than just on/off control. They
can also be used say to control the brightness of an LED (such as the LED strip-
light we we will use in the examples) or the speed of a motor using a process called
Pulse Width Modulation or PWM.

A PWM output supplies a train of
pulses to the control pin. The duration
of these pulses is varied to vary the
apparent brightness of a lamp or the
speed of a motor. So a short pulse will
make the lamp appear dim or a motor
slow but, if the pulse is long (3.3V for
most of the cycle) then the lamp will
appear bright or the motor rotate
quickly.

Although the SSRs used in the Dual
Relay are much faster than
electromechanical relays, they are still
relatively slow in electronics terms.

The graph below shows the response
of the relay (at full load of 1.5A) to PWM at various frequencies.

The ideal SSR would have a completely straight line and, at lower currents than the
test current here, you get close to that ideal. But here, you can see that you get
quite acceptable results up to a frequency of about 100Hz.

Page 20

TROUBLESHOOTING
Problem: I've connected a motor/light to the relay outputs, but they do not turn on
even though the orange indicator LEDs on the Dual Relay light up.

Solution: The screw-terminal relay outputs do not supply an output voltage, they
act as an electronic switch. This means that to operate they must act as a switch in
a circuit that has both it's own power supply and a suitable load. Here is an
example.

Problem: The orange indicator LEDs do not light, even though they are connected
to the control pins of the Dual Relay.

Solution: Here are a few tips:

Check that all the jumper wires used are correctly wired for the board that you are
using, and that the all-important GND wire is connected. Jumper wires will
occasionally fail silently, so try swapping out the jumper wires for other wires.

Make sure that the GPIO pin that you are using has been set to operate as a digital
output.

You can also check that the Dual Relay is functional by connecting the A or B
control pins to 3.3V or 5V on your microcontroller rather than using a GPIO pin.

Page 21

MONKMAKES
As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your
electronics projects. Find out more, as well as where to buy here:
https://monkmakes.com/products you can also follow MonkMakes on Twitter
@monkmakes and Instagram as @monk_makes_ltd.

Breadboard for Pico (a solderless
breadbord with Pico Pin names printed
on it)

https://monkmakes.com/pico_bb

Electronics Kit 1 for Pico.
https://monkmakes.com/pico_kit1

MOSFETTI – 4 channel MOSFET
switch.
https://monkmakes.com/mosfetti

A 4-channel low-voltage Solid State
Relay controller designed for the
Raspberry Pi Pico.

https://monkmakes.com/picocontroller

Page 22

https://monkmakes.com/products

BOOKS
Simon Monk (the author of this guide) has also written a number of books about
hoppy electronics and programming. You can find a full list at:
https://simonmonk.org, but here are a few that may be of interest.

Page 23

https://simonmonk.org/

	Warning
	Assembly
	Using the Dual Relay
	Downloading the Examples
	Raspberry Pi Pico
	You will need
	Wiring – Raspberry Pi Pico
	Example Software
	Turning Lamps on and off
	Pulse Width Modulation (PWM)

	ESP32
	You will need
	Wiring – ESP32
	Example Software
	Turning Lamps on and off
	Pulse Width Modulation (PWM)

	Arduino
	You will need
	Wiring – Arduino
	Example Software
	Turning Lamps on and off
	Pulse Width Modulation (PWM)

	Using Solid State Relays
	Warning: Low Voltage ONLY
	Switching Inductive Loads

	Pulse Width Modulation
	Troubleshooting
	MonkMakes
	Books

