

Instructions:

PROJECT BOX 1 FOR RASPBERRY PI

Compatible with Raspberry Pi 2, 3 and 4.

V1a-2

KIT CONTENTS
Before you start making your projects, please make sure that you have all the parts
listed below:

Page 2

You will of course also need a Raspberry Pi with a recent version of Raspberry Pi
OS on it. The Raspberry Pi must also have a working internet connection in order
to download and install the programs.

Table of Contents
Kit Contents ..2
Setting up your Raspberry Pi...4
Project 1. Make an LED Blink..8
Project 2. Make 2 LEDs Blink...13
Project 3. RGB Color Display...16
Project 4. CheerLights...19
Project 5. Thermometer...22
Project 6. Thermometer Plus...25
Project 7. Reaction Timer..28
Project 8. Light Meter..31
Project 9. Light Harp..34
Project 10. Proximity Detector..36
Appendix A. Troubleshooting...40
Appendix B. How a Breadboard Works..41
Appendix C. The Resistor Color Code..43
Appendix D. The GPIO Zero Library..44
Appendix E. The GUI Zero Library..45
Appendix F. The Pi Analog Library..46

Page 3

SETTING UP YOUR RASPBERRY PI
Before you can use the kit, you need to configure your Raspberry Pi and install
some software. Your Raspberry Pi must be connected to the Internet for this.

The Terminal
You will need to use the Terminal to type commands to set up your Raspberry Pi.

To start a Terminal window, click on the terminal icon indicated by the arrow below.

This will open a Terminal like the one shown below.

When the Terminal is ready for you to enter a command, it will prompt you with the
$ character. For example, type the command 'ls'. This will show you a list of files in
your 'current directory'.

In the instructions in this booklet, you will see the $ symbol with the commands that
you are asked to type. This is just a reminder that you are using the Terminal, you
do not actually need to type the $ again.

Page 4

Step 1. Update your Raspberry Pi
Make sure that your Raspberry Pi is up to date by running the following commands
in the Terminal:

$ sudo apt-get update
$ sudo apt-get upgrade

If you get error messages during the upgrade, restart your Raspberry Pi and run
both commands again.

If you see a message in the Terminal that asks “Do you want to continue? [Y/n]”
press “y” to continue.

Note that these commands could take a considerable time to complete if your
Raspberry Pi has a lot to update.

Step 2. Setup the Mu Editor
This kit assumes that you are using the Mu editor to run the programs for the
project and also for you to view the code and modify it if you are feeling
adventurous. If you have a recent version of Raspbian, the good news is that Mu is
ready-installed. If it is installed you should find it in the Programming section of the
Main Menu. If its not there, you can install it by running the following command in
the Terminal.

$ sudo apt-get install mu-editor

Once Mu is installed, find it in the
Programs section of the Main
menu and run it.

When you run Mu for the first
time, it will open a Set Mode
window that prompts you to
select what you are going to be
using Mu for. Select the option
Python 3.

Page 5

Once you have selected
Python 3 the Mu editor will
open. You can come back to
this when you are ready to
use the program for Project 1,
but for now, lets install the
programs needed for the
projects.

Step 3. Install the Project Software
Its important that you carry out step 2 before step 3. Mu needs to have been run
once in order to create the directory where the project programs will go.

Start by opening an Terminal on your Raspberry Pi and issue the following
commands to fetch an installation script to install all the software that you will need
for the projects in this book. Note its pb1.sh (the digit 1 not L) at the end of the wget
command.

$ wget http://monkmakes.com/pb1.sh
$ sh pb1.sh

Step 4. Fit the Raspberry Leaf
Because we need to know which pin is
which on the Raspberry Pi, fit the
supplied Raspberry Leaf onto your
Raspberry Pi as shown.

Page 6

Raspberry Pi 400
This kit is designed for the Raspberry Pi 4 and earlier bare-circuit-board versions of
the Raspberry Pi. However, you can still use it with the Raspberry Pi 400, but it will
be more difficult to identify the GPIO pins.

Even though you cannot place the Raspberry Leaf over the GPIO pins, you can use
it as a reference for when to connect the wires. You just need to count carefully
along from one end of the connector to find the right pin.

You can also separately buy a MonkMakes GPIO Adapter for Pi 400
(https://monkmakes.com/pi_400_gpio), that makes it a bit easier to make the
connections.

You are now ready to start making Project 1.

Page 7

PROJECT 1. MAKE AN LED BLINK
To make this first project (and all that follow), you are going to wire up the
breadboard as shown below, then connect the breadboard to the pins on the
Raspberry Pi, and then run the program for this project in Mu.

Step 1. Find the parts you need
For this project, you will need the following items:

● 470Ω Resistor (yellow, purple and brown stripes)
● Red LED
● Two Female to male jumper wires

Use the table of parts on pages 2 and 3 to identify the parts you need. If you are
interested in what the resistor color stripes mean see Appendix C.

Step 2. Wiring up the breadboard.
Lets start by placing the components onto the breadboard. Using the diagram
below, push the component legs through the holes in the breadboard at the
positions shown.

If you haven't come across breadboards in the past, Appendix B provides an
explanation of how they work.

Be careful with the orientation of the LED - the long leg is the positive lead (row 5),
and the shorter leg is the negative lead (row 6). It does not matter which way
around the resistor goes.

Page 8

Step 3. Connecting the Breadboard to the Raspberry Pi.
Now that the components are in the right place, take a purple and blue female to
male jumper wire and connect the Raspberry Pi to the breadboard as shown below:

It doesn't really matter what color leads you use to make the connections. But when
the projects get more complex, sticking to the colors used in the diagrams can
make it easier to see what's going on.

Step 4. Running the Program
To run the program, we first need to load it into Mu. So, if Mu is not running, start it
now from the Programs section of the Main menu and click on Load.

Page 9

All the project programs are held in the directory pb1. So double click on this to see
the list of programs:

Select the first program (01_blink.py) and click Open.

To start the program, click on the Run button. If everything is set up correctly, the
LED should be blinking on and off.

When you want to exit the program, click Stop.

If the LED doesn't blink on and off, check that its the right way around and that
everything is wired up as shown in the diagram.

Page 10

The Code for Project 1
If you want to understand how the code works, take a look at the code in Mu.

Any lines beginning in # are called comment lines. These are not actually program
code, but rather explain something that's going on in the code.

The import commands specify the library files that the code uses. In this case:

• The gpiozero library lets us turn the LED on and off

• From the signal library we just need the one function (pause) that is used
right at the end of the program.

When setting up the LED by using LED(18), the number 18 refers to the pin that the
LED is connected to.

The pause() command at the end of the program is needed so that the program will
continue running (and continue blinking) after the blink command is used. If the
pause is removed, the LED will only blink once and then the program will end.

All the programs in this kit make use of libraries of Python code that are not actually
part of the Python language, but rather provide useful toobags of Python code that
you can make use of - to read sensors, make LEDs flash etc. Appendices D, E and
F explain more about the libraries

Things to Try
To make the LED blink faster, try changing the values of on_time and off_time to
0.1.

Page 11

PROJECT 2. MAKE 2 LEDS BLINK
Don't dismantle Project 1 just yet, for Project 2, you are going to add another LED
and make the two LEDs blink alternately.

BEFORE you start changing what's on the breadboard, disconnect the
breadboard from your Raspberry Pi. An accidental short-circuit could damage
or break your Raspberry Pi.

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 470Ω Resistors
● Two Red LEDs
● Three Female to Male jumper wires
● Male to Male jumper wire

Step 2. Build and Connect the breadboard.
Wire up the breadboard and connect it to your Raspberry Pi using the diagram
below as a guide.

Notice how the blue male to male jumper wire is used to connect the two negative
connections of the LEDs.

Page 12

Step 3. Running the Program
Load and run the program called 02_blink_twice.py in Mu. The LEDs should now
blink in turn.

The Code for Project 2
The code is very similar to the 01_blink.py example, except for a small delay before
starting to make the second LED blink.

from gpiozero import LED
import time
from signal import pause

red_led1 = LED(18)
red_led2 = LED(23)

red_led1.blink(0.5, 0.5)
time.sleep(0.5)
red_led2.blink(0.5, 0.5)

pause()

The blink function requires two arguments; the first represents the time the LED
stays on and the second represents the time the LED stays off, both in seconds. In
this example, the first LED will start blinking every half a second and then the
second LED will join in after another 0.5 second delay so that the LED's will blink
one after the other.

Page 13

PROJECT 3. RGB COLOR DISPLAY
This project will demonstrate how to control an RGB LED with your Raspberry Pi.

Step 1. Find the parts you need
For this project, you will need the following items:

● Three 470Ω Resistors
● An RGB LED
● Four Female to Male jumper wires

Step 2. Build and Connect the breadboard.
Wire up the breadboard and connect it to your Raspberry Pi using the diagram
below as a guide.

All three of the resistors used in this project are the same value of 470Ω. You
should find that one of the RGB LED's leads is longer than the rest. Place the RGB
LED such that the long lead is in row 2 of the breadboard and connected to the
GND wire from the Pi. Make sure that the legs of the resistors are not touching each
other.

Step 3. Running the Program
Load and run the program called 03_rgb.py in Mu. After a short delay, this should
open a window with three sliders, one for each color: red, green and blue. Adjusting
these sliders should change the color of the RGB LED.

Once you have finished, close the window (with the sliders in it).

Page 14

The Code for Project 3
At first glance this program looks quite long, however this is mainly due to doing
everything three times (one for each color/slider) and because there is a graphical
user interface (GUI). The guizero library is used to make it easy to create a nice
GUI. You can read more about guizero in Appendix E.

rgb_led = RGBLED(18, 23, 24)

red = 0
green = 0
blue = 0

This first section sets up the RGB LED by telling the Pi which pins we have used for
each color (red, green and blue in that order). The next three lines initialize some
variables that are used to keep track of the color values.

The next three methods are almost identical, the only difference is that each one
controls a different color. Therefore, we can just look at how one works to
understand the rest.

def red_changed(value):
 global red
 red = int(value)
 rgb_led.color = Color(red, green, blue)

Each of these functions will be called when its respective color slider is changed.
This first function will therefore be called when the red slider is changed in order to
update the red component of the color being displayed. The parameter value that is
passed to the function will be the new value of the slider after it has been changed.
The global keyword is used to define red as a global variable so that the variable
red accessed inside the function is the same as the variable used outside of the

Page 15

function. The value of the red component is updated to the new value from the
slider and the color of the RGB LED is then changed to reflect this.

The rest of the code is all for the GUI and again, there is some repetition for each of
the three colors.

app = App(title='RGB LED', width=500, height=400,
layout="grid")

This line creates the window that the sliders will be in. It gives the window a title and
sets its size to 500 pixels by 400 pixels. The layout is also set to a grid so that the
text labels and sliders will be properly aligned.

Text(app, text="Red", grid=[0, 0])
Slider(app, command=red_changed, end=255, width=400,
height=50, grid=[1, 0]).text_size = 30

The first line creates a text label for the slider. This includes a grid reference to
properly align everything in the window. The first number in the grid refers to the x
or horizontal location and the second number corresponds to the y or vertical
direction. The second line creates the slider itself. The argument
command=red_changed defines what should happen when the slider is changed
and in this case, will change the color of the LED using the functions that were
defined before.

These two lines are then repeated for green and blue too.

Finally, the window needs to be displayed which is done using:

app.display()

Page 16

PROJECT 4. CHEERLIGHTS
CheerLights is an Internet of Things (IoT) project that is designed to synchronise
the colors of people's lights from all over the world. The idea is that anyone can
tweet at the CheerLights Twitter account a color, which will then be set in a text
document that can be accessed over the internet. This means that anyone using
the CheerLights API (Application Programming Interface) can synchronise their
lights to be the same color.

Step 1. Find the parts you need
For this project, you will need the following items:

● Three 470Ω Resistors
● An RGB LED
● Push Switch
● Five Female to Male jumper wires
● Male to male jumper wire

Step 2. Build and Connect the breadboard.
Wire up the breadboard and connect it to your Raspberry Pi using the diagram
below as a guide. Note that this is the same basic layout as Project 3, but with an
extra push button.

Page 17

Step 3. Running the Program
To use this project your Raspberry Pi must be connected to the internet.

Load and run the program 04_cheerlights.py using Mu.

After a few seconds, the LED will automatically set itself to the current Cheerlights
color, checking every 10 seconds. Pressing the button will turn the LED off until the
Cheerlights color changes. You can force this to happen by tweeting a message
such as @cheerlights red.

You should find that the LED color will change every few minutes, sometime much
more often, as people around the world tweet to set a new Cheerlights color.

The Code for Project 4
In order to get the latest color from CheerLights, this program needs to be able to
connect to the CheerLights API over the internet. This is handled by the Python
requests library, which is used here to get the content of a web page containing the
current CheerLights color in hex format.

from gpiozero import Button, RGBLED
from colorzero import Color
import time, requests

update_period = 10 # seconds
led = RGBLED(red=18, green=23, blue=24)
button = Button(25)

cheerlights_url =
"http://api.thingspeak.com/channels/1417/field/2/last.txt"
old_color = None

This first section of code handles the import statements and does some
initialization. The LED is set up on pins 18, 23 and 24 for red, green and blue
respectively. The button is set up on pin 25.

The variable update_period sets the time in seconds between successive checks.
10 seconds is about right for this.

The variable old_color is used to determine whether the color retrieved from the
cheerlights webservice has changed since the last request.

The pressed function is linked to a button press and sets the red, green and blue
color values all to 0 turning the LED off.

The while loop contains the request to the Cheerlights web service and also checks
to see if the Cheerlights color has changed. If it has, then it changes the LED color
to the new color and then sets old_color to color.

Page 18

Finally the program sleeps for the update_period (10 seconds).

def pressed():
 led.color = Color(0, 0, 0)
button.when_pressed = pressed

while True:
 try:
 cheerlights = requests.get(cheerlights_url)
 color = cheerlights.content
 if color != old_color:
 led.color = Color(color)
 old_color = color
 except Exception as e:
 print(e)
 time.sleep(update_period)

Page 19

PROJECT 5. THERMOMETER
This project uses a thermistor to measure the temperature. The temperature
reading is not very accurate, but it should give you a rough idea.

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 1kΩ Resistors
● 330nF Capacitor
● Thermistor
● Three Female to Male jumper wires

Step 2. Build and Connect the breadboard.
Wire up the breadboard and connect it to your Raspberry Pi using the diagram
below as a guide.

Note that the resistors in this project are different from the ones in the previous four
projects. The capacitor and thermistor, like the resistors, do not have any
preference for which way round they are placed.

Step 3. Running the Program
There are two versions of the program for this project. The program
05_thermomether.py displays the temperature in degrees Celsius, whereas the
program 05_thermomether_f.py displays the temperature in Fahrenheit. Load the
version you want to run into Mu and then click the Run button.

Page 20

This should open a window that displays the approximate temperature of the
thermistor, updating once per second. Try holding the thermistor (the black
component) between your fingers to increase the temperature.

The program can be exited by simply closing the temperature reading window.

The Code for Project 5
The code for this project is almost exactly the same for each version, so here we
will just look at the code for the Celsius version.

This project (and some of the subsequent projects) use a library called PiAnalog,
written by Simon Monk. This library handles the analog side of using the Raspberry
Pi's pins, which is not as straightforward as the digital pins we have been using so
far. See Appendix F for more information on the Pi Analog library.

After initializing the PiAnalog library, a function must be declared to update the
temperature reading. The function is reasonably self-explanatory:

def update_temp():
 temperature = p.read_temp_c()
 temperature = "%.2f" % temperature
 temp_text.value = temperature
 temp_text.after(1000, update_temp)

The temperature is read using the PiAnalog function read_temp_c() (more on what
this function actually does in the Explanation section later). The temperature value
is then rounded to two decimal places and updated in the text label in the GUI. The
final line of the function calls the function again after 1000 milliseconds or 1 second.

Page 21

This creates an infinite loop in the function to make sure that the temperature value
is updated every second.

The rest of the program handles the GUI:

app = App(title = "Thermometer", width="400", height="300")
Text(app, text="Temp C", size=32)
temp_text = Text(app, text="0.00", size=110)
temp_text.after(1000, update_temp)
app.display()

The first line creates the window and the second line places a label to display
“Temp C”. The text label to display the current temperature reading is created next
and assigned the name temp_text. The after(1000, update_temp) command that
was used in the update_temp function is used again here to start the loop of
updating the temperature and then the window can now be displayed.

The Explanation for Project 5
In the code for this project, the actual business of taking a temperature reading from
the thermistor is hidden behind the read_temp_c() function from the PiAnalog
library. If you wish, you can see exactly how this function works by typing the
following commands in the Terminal:

$ cd /home/pi/pi_analog
$ nano PiAnalog.py

The operation of the circuit can be split into two parts: a thermistor (which is a
device that has a resistance that varies with temperature) and the rest of the circuit
which measures the resistance of the thermistor.

An equation called the Steinhart-Hart equation describes exactly how this
temperature varies with the measured resistance of the thermistor. This means that
by measuring the resistance of the thermistor, we can find the (approximate)
temperature of the thermistor using the PiAnalog library.

The Fahrenheit version of the program works in exactly the same way except that
the value for temperature in Celsius is converted into Fahrenheit at the end.

Page 22

PROJECT 6. THERMOMETER PLUS
This project expands on the thermometer built in Project 5 to include a buzzer that
will sound if the thermistor reaches a certain temperature (25 °C, 77 °F by default).

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 1kΩ Resistors
● 330nF Capacitor
● Thermistor
● Buzzer
● Four Female to Male jumper wires
● Male to male jumper wire

Step 2. Build and Connect the breadboard.
If you have just built Project 5, you can leave everything where it is and simply add
the extra wires and the buzzer. The orientation of the buzzer does not matter as it
can be placed either way around.

Page 23

Step 3. Running the Program
Similarly to Project 5, there are two programs for this project, one in Celsius and
one in Fahrenheit (06_thermometer_plus.py and 06_thermometer_plus_f.py). Run
the program for your preferred units of temperature and a window similar to that in
Project 5, should open displaying the current temperature.

Warm the thermistor up by holding it between your fingers. Once the temperature
gets above 25 °C (or 77°F), the buzzer should sound. If you can't get the
temperature above the default value, you may need to edit the program and change
the set_temp variable to something lower (see the Code section below if you are
unsure how to do this).

The Code for Project 6
The code for this project is similar to Project 5 as the thermometer part of it is
unchanged. For an explanation of how the thermometer works, see the Explanation
for Project 5 section.

from PiAnalog import *
from guizero import App, Text
from gpiozero import DigitalOutputDevice
import time

set_temp = 25

pin1 = DigitalOutputDevice(24)
pin2 = DigitalOutputDevice(25)
p = PiAnalog()

def buzz(pitch, duration):
 period = 1.0 / pitch
 p2 = period / 2
 cycles = int(duration * pitch)
 for i in range(0, cycles):
 pin1.on()
 pin2.off()
 delay(p2)
 pin1.off()
 pin2.on()
 delay(p2)

def delay(p):
 t0 = time.time()
 while time.time() < t0 + p:
 pass

Update the temperature reading
def update_temp():
 temperature = p.read_temp_c()
 if temperature > set_temp:

Page 24

 buzz(2000, 0.5)
 temperature = "%.2f" % temperature # Round the
temperature to 2 d.p.
 temp_text.value = temperature
 temp_text.after(1000, update_temp)

Create the GUI
app = App(title = "Thermometer", width="400", height="300")
Text(app, text="Temp C", size=32)
temp_text = Text(app, text="0.00", size=110)
temp_text.after(1000, update_temp) # Used to update the
temperature reading
app.display()

The variable at the beginning of the program, set_temp defines the threshold
temperature above which the buzzer will sound. This is the variable to change if you
can't get the thermistor up to 25 °C or you live somewhere warm.

The main difference between this program and the one from Project 5 is the code to
control the buzzer.

First, a buzzer is set up on pin 24. Then, a new function is defined to control the
actual buzzing of the buzzer. The note that the buzzer plays is determined by how
quickly the buzzer turns on and off. The function buzz() is used so that the pitch
can be given in Hertz (Hz) and is then converted to make the buzzer sound at this
frequency.

The rest of the program is familiar from Project 5 except for two new lines in the
update_temp() function. Quite simply, the two new lines will check if the current
temperature value is above the set_temp value and, if it is, will sound the buzzer.
This check occurs every time that the temperature is updated (once a second).

Page 25

PROJECT 7. REACTION TIMER
This project will allow you to time your reactions using LEDs and buttons.

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 470Ω Resistor
● Two Red LED
● Two Push switches
● Five Female to Male jumper wires
● Male to Male jumper wire

Step 2. Build and Connect the breadboard.
When assembling the circuit, make sure that the longest leg of the LEDs are in the
positions marked with a + on the breadboard. Note also that the buttons are
reversible and can be placed wither way around.

Page 26

Step 3. Running the Program
To use the reaction timer, load and run the program in Mu. When the program
starts, you will notice that the bottom part of the Mu window shows a message
telling you to Press the button next to the LED that lights up.

After a while one of the LEDs will light, and you should press the button next to the
LED that lights as fast as possible. You will then get a message telling you how
many milliseconds you took to press the right button.

The Code for Project 7
This code may seem a bit complicated at first but this is mainly due to making sure
the right button was pressed at the right time.

from gpiozero import LED, Button
import time, random

left_led = LED(25)
right_led = LED(23)
left_switch = Button(24)
right_switch = Button(18)

find which buttons pressed 0 means neither, -1=both, 2=right, 1=left
def key_pressed():
 # if button is pressed is_pressed will report false for that input
 if left_switch.is_pressed and right_switch.is_pressed:
 return -1
 if not left_switch.is_pressed and not right_switch.is_pressed:
 return 0
 if not right_switch.is_pressed and left_switch.is_pressed:
 return 1
 if right_switch.is_pressed and not left_switch.is_pressed:
 return 2

while True:
 left_led.off()
 right_led.off()
 print("Press the button next to the LED that lights up")
 delay = random.randint(3, 7) # random delay of 3 to 7 seconds
 led = random.randint(1, 2) # random led left=1, right=2
 time.sleep(delay)
 if (led == 1):

Page 27

 print("left")
 left_led.on()
 else:
 print("right")
 right_led.on()
 t1 = time.time()
 while not key_pressed():
 pass
 t2 = time.time()
 if key_pressed() != led: # check the correct button was pressed
 print("WRONG BUTTON")
 else:
 # display the response time
 print("Time: " + str(int((t2 - t1) * 1000)) + " milliseconds")

The function key_pressed() is used to determine which combination of buttons have
been pressed (or not). If both buttons are pressed, it will return -1, if neither are
pressed, it will return 0, if just the left button is pressed it will return 1 and if the right
button is pressed, it will return 2. The reason for picking these numbers will become
clearer further on in the code.

To make sure that you cannot cheat by anticipating when the LED will light up, a
random delay between 3 and 7 seconds is used. To choose which LED will be
displayed, a random number between 1 and 2 is picked. If 2 is picked, we define
that as being right, otherwise if 1 is picked, we set the led variable to 1 to represent
left.

As soon as the LED to be lit is decided and lit, the current time is stored in t1. The
while loop calls the key_pressed() function which returns the number corresponding
to the combination of buttons pressed. As key_pressed() returns 0 when no buttons
are pressed, the condition not key_pressed() is equivalent to not 0 which is the
same as 1 , or True and so the loop will keep on going until a button is pressed. The
command pass is used in the body of the loop as nothing actually needs to happen
in the loop itself, but it cannot be left blank.

Pressing a button will break the while-pass loop and so by recording the time in t2,
the time taken to press the button can be found by doing t2-t1. If the wrong button is
pressed, the user is informed of this. Otherwise, the correct button must have been
pressed, so the reaction time is printed in milliseconds.

Page 28

PROJECT 8. LIGHT METER
In Projects 5 & 6, a special type of resistor called a thermistor was used to measure
the temperature. In this project, a special type of transistor called a phototransistor
is used to measure the light level.

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 1kΩ Resistors
● 330nF Capacitor
● Phototransistor
● Three Female to Male jumper wires

Step 2. Build and Connect the breadboard.
Note, the phototransistor must be placed with the longer lead to row 4 of the
breadboard.

Step 3. Running the Program
Unlike the thermometer which has well defined units of temperature, the scale used
for the light level here is somewhat arbitrary. Ultimately, the larger the number the
more light is shining on the phototransister.

Load the program 08_light_meter.py into Mu and run it.

You should find that the light level changes by placing your hand over the
phototransistor or by shining a torch on it.

Page 29

When you want to exit the program, close the window that is displaying the light
level.

The Code for Project 8
A lot of the code and general principles of this project are similar to those used in
Projects 5 & 6. If you want a deeper explanation of some of the principles, have a
look at the explanation section from Project 5.

from guizero import App, Text
from PiAnalog import *
import time, math

p = PiAnalog()

multiplier = 2000 # increase to make more sensitive

def light_from_r(R):
 light = 1/math.sqrt(R) * multiplier
 if light > 100:
 light = 100
 # Sqareroot the reading to compress the range
 return light

The values for the resistance of the phototransistor follow an inverse square root
relationship with the perceived brightness, so the square root of the resistance is
used in the function light_from_r().The variable multiplier can be used to adjust the
sensitivity of the light meter.

The final parts of the program are related to the GUI and updating the reading.

Page 30

def update_reading():
 light = light_from_r(r.read_resistance())
 reading_str = "{:.0f}".format(light)
 light_text.value = reading_str
 light_text.after(200, update_reading)

app = App(title="Light Meter", width="400", height="300")
Text(app, text="Light", size=32)
light_text = Text(app, text="0", size=110)
light_text.after(200, update_reading)
app.display()

First, the light level is calculated and then rounded to zero decimal places i.e. an
integer. The value of the text label displaying the light level is then updated, and the
final command in update_reading() is used to ensure that the reading will update
every 0.2 seconds.

The final block of code is then just setting up the window, starting the
update_reading() loop to run every 0.2 seconds and finally displaying the window.

Page 31

PROJECT 9. LIGHT HARP
A more musical use of the phototransistor is to use it as a sort of light harp, where
the musical note played by the buzzer depends on the level of light on the
phototransistor.

Step 1. Find the parts you need
For this project, you will need the following items:

● Two 1kΩ Resistors
● a 330nF Capacitor
● a Phototransistor
● a Buzzer
● Four Female to Male jumper wires
● a Male to Male jumper wire

Step 2. Build and Connect the breadboard
If you have just constructed Project 8, you do not need to take anything out of the
breadboard and can simply add the extra wires and the buzzer as shown.

Page 32

Step 3. Running the Program
Load and run the program 09_light_harp.py in Mu.

The piezo buzzer is not very musical! To change the tone, wave your hand over the
phototransistor or try shining a torch on it.

The Code for Project 9
The code for this project seems much simpler than the code for the light meter in
the previous project. Part of this is because this project does not need a GUI, and
the other main reason is that there is no need to try and calculate the actual light
level for this project (more on this below).
from gpiozero import DigitalOutputDevice
import time
from PiAnalog import *

pin1 = DigitalOutputDevice(24)
pin2 = DigitalOutputDevice(25)
p = PiAnalog()

def buzz(pitch, duration):
 period = 1.0 / pitch
 p2 = period / 2
 cycles = int(duration * pitch)
 for i in range(0, cycles):
 pin1.on()
 pin2.off()
 delay(p2)
 pin1.off()
 pin2.on()
 delay(p2)

def delay(p):
 t0 = time.time()
 while time.time() < t0 + p:
 pass

while True:
 reading = p.analog_read() # 1000 to 5000 ish for indoors
 f = reading * 2
 buzz(f, 0.1)

The way that the piezo buzzer works is by turning on and off very quickly. How
quickly it turns on and off determines the tone emitted by the buzzer. The value of
delay is taken from the analog_read() function from the PiAnalog library is
proportional to the resistance of the phototransistor (and hence the light level),
changing the light level of the phototransistor will change the tone of the buzzer.

If you want more information on how PiAnalog and the phototransistor works, see
Projects 5 & 8.

Page 33

PROJECT 10. PROXIMITY DETECTOR
This project uses an open-ended wire to act as a proximity detector. If you get close
enough to the wire, or actually touch it, the LED will light up. Moving away from the
wire will then turn the LED off again.

Step 1. Find the parts you need
For this project, you will need the following items:

● 470Ω Resistor
● 4.7MΩ Resistor
● Red LED
● Four Female to Male jumper wires
● Male to Male jumper wire

Step 2. Build and Connect the breadboard.
The color code of the two resistors used in this project are very similar, so be
careful to get them the right way round.

Page 34

Step 3. Running the Program
Load and run the program 10_proximity.py in Mu.

When you first run the program, it should tell you that it is calibrating. Try to keep
away from the lead while this is happening. After it has finished calibrating, it should
output a number and you can then try to get the LED to light by getting close to the
lead.

You may well find that you can only get the LED to light by actually touching the
floating/open-ended lead. If you want to improve the sensitivity, try attaching a
square of aluminum foil to the end of the wire. This should allow you to turn on the
LED by hovering your hand a few cm above the foil.

The Explanation for Project 10
If you look at the code before reading this explanation it will probably look a bit like
magic, but it is actually using an idea we have seen before in the thermometer and
light meter projects.

In the thermometer and light meter projects, the resistance of something needed to
be measured, which was achieved by timing the charge time of a capacitor. The
way to tell when the capacitor was charged above a certain level was to check
when a pin connected to the capacitor became an input pin, which happens at
about 1.65 V.

But this project doesn't use a capacitor, so why are we talking about this? The
reason is that the lead and the air surrounding it have a very small capacitance. As
was discussed in Project 5, the time taken for a capacitor to charge is proportional
to the resistance times the capacitance. Because the lead and air form a small
capacitor, a very large resistor (this project uses 4.7 MΩ) can be used to boost this
time to something long enough to measure.

This means that by timing how long this “capacitor” takes to charge, the time
constant (the product of resistance times capacitance) of the lead and air can be
measured. If this time constant is repeatedly measured, then when someone places
a finger near the lead, the capacitance (and time constant) will change. If the time
taken changes above a certain threshold value, then the LED can be turned on, as
someone has moved close enough to the lead to change the capacitance.

Page 35

The Code for Project 10
With the above explanation in mind, the code for this project should (hopefully)
make sense.
10_proximity.py

from gpiozero import DigitalOutputDevice, LED, Button
import time

This project uses the Capsense technique modelled on this:
http://playground.arduino.cc/Main/CapacitiveSensor

threshold = 0

setup the pin modes
send_pin = DigitalOutputDevice(18)
sense_pin = Button(23, pull_up=None, active_state=True)
red_led = LED(24)
send_pin.on()

return the time taken for the sense pin to flip state as
a result of the capacitative effect of being near the sense pin
def step():
 send_pin.off()
 t1 = time.time()
 while sense_pin.value:
 pass
 t2 = time.time()
 time.sleep(0.1)
 send_pin.on()
 time.sleep(0.1)
 return (t2 - t1) * 1000000

This function takes 10 readings and finds the largest
def calibrate():
 global threshold
 print("Wait! Calibrating")
 n = 10
 maximum = 0
 for i in range(1, n):
 reading = step()
 if reading > maximum:
 maximum = reading
 threshold = maximum * 1.2
 print(threshold)
 print("Calibration Complete")

calibrate()

while True:
 reading = step() # take a reading
 red_led.value = (reading > threshold)

The first step is to set up the pins. The send lead is used to charge the “capacitor”
and the sense lead will indicate when the capacitor is charged above or below a

Page 36

certain level.

The step() function is used to take a reading of the current time constant (resistance
times capacitance). This is done by turning off the send pin and timing how long the
sense pin takes to drop below a certain voltage as the sense pin is connected to the
send pin by the resistor and lead capacitance. The command sense_pin.value will
return 1 if the pin is above this level or 0 if it is below it. Therefore the while loop will
keep going until the sense pin drops below this level.

Once the timing is complete, the send pin is turned back on ready for the next
reading.

To know whether or not the capacitance has changed (by moving your finger closer
to the lead), the ambient capacitance must first be measured. This is done using the
calibrate() function which takes 10 readings (using the step() function) and returning
the largest reading taken multiplied by 1.1.

The reason the threshold is the maximum value times 1.1 is because the
capacitance can fluctuate quite a bit, so if the threshold was simply set to the
maximum value, the LED would keep being set off.

Once the calibration is complete, the program can then take continuous readings
and compare them to the threshold value. Introducing a finger to the lead will
increase the capacitance, so if the current reading is greater than the threshold, the
condition reading > threshold will evaluate to 1 (or True) and the LED will be turned
on.

Page 37

APPENDIX A. TROUBLESHOOTING
Problem: Error messages when using update/upgrade commands

Solution: Reboot your Raspberry Pi and run the commands again. Make sure you
are connected to the internet.

Problem: Error message when using wget command: unable to resolve host
address 'monkmakes.com'

Solution: This most likely means that your Raspberry Pi is not connected to the
internet. If this problem persists after connecting to the internet, wait about 10
minutes and then try again.

Problem: Error message when using wget command: “Error 404”

Solution: This usually indicates that the URL in the wget command has been
mistyped. Try typing out the command again.

Problem: LED is not working

Solution: Check that the LED is the right way around. The long leg is the positive
end and the short leg is the negative end. Make sure that the negative (shorter) leg
is connected to GND.

Problem: Components are not working.

Solution: Carefully check that the legs of each components are not touching each
other. Check if all of the component legs are properly pushed into the breadboard.
Make sure that all of the leads are going to the correct pins on the Pi and to the
correct holes on the board. Make sure that all LEDs are the correct way around.
Double check that all resistors have the correct value (color stripes). Make sure that
you are running the correct program for the project you have set up.

Support
For the most up-to-date help on this kit, see http://monkmakes.com/pb1 or contact
MonkMakes support at support@monkmakes.com

Page 38

APPENDIX B. HOW A BREADBOARD WORKS
All the projects in this kit are built on the provided breadboard which is connected to
the Raspberry Pi GPIO pins using the Male to Female Jumper Wires.

If you connect the projects in exactly the same way as the diagrams then they
should work fine. However, it can be quite tedious to use exactly the same holes on
the breadboard so it is worth understanding how the holes are all connected.

The rails on the board are labelled around the outside - two sets of outer rails
labelled + and – and the center holes are labelled using numbers 1-30 for rows and
a-j for columns.

The bulk of the board in the center is connected horizontally. Row 1 is not
connected to row 2 however holes 1a, 1b, 1c, 1d and 1e are all connected. The
break in the very center of the board also breaks the connections between rows.
For example, hole 1e is not connected to 1f. Each row follows the same pattern.

Again, the rows are on the right hand side of the board are connected (1f-1j).

Page 39

If you were to take your breadboard apart, here's what it would look like. You can
see the metal clips connecting each section together .

To use the board, firmly push the metal leads of the components or wires into the
holes of the board. Make sure that the leads are in the center of the holes as they
can often get stuck on the sides.

The component leads often need to be bent to properly fit in the right holes, but be
careful not to bend the leads too far (especially on the components with shorter
leads such as the buzzer) as they can snap off.

Page 40

APPENDIX C. THE RESISTOR COLOR CODE
Resistors have little stripes on them that tell you
their value. Here's how to read them.

Each color has a value.

There will generally be three colored bands
together starting at one end of the resistor, a
gap, and then a single band at one end of the
resistor. The single band at the far side indicates
the accuracy of the resistor value.

The first band is the first digit, the second the
second digit and the third ‘multiplier’ band is how
many zeros to put after the first two digits.

The Gold and Silver stripes at the far end of the
resistor are used to indicate how accurate the
resistor is, so Gold is +-5% and Silver is +-10%.
In other words a Gold (5%) 1000Ω (1kΩ) resistor
could have an actual resistance between 950Ω
and 1050Ω.

5% is plenty accurate enough for the projects in
this kit.

Page 41

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Gray 8

White 9

Gold 5%

Silver 10%

APPENDIX D. THE GPIO ZERO LIBRARY
The GPIO Zero library is designed to make it easy to program electronics such as
LEDs and switches that are attached to your Raspberry Pi's GPIO pins.

The library contains a number of classes that represent the electronics being
attached.

For example, the class LED represents (you guessed it) an LED attached to a
particular GPIO pin. To be able to use this class, we must first import it from the
GPIO library like this:
from gpiozero import LED

gpiozero now needs to know which pin the LED is attached to, which you do as
follows. In this case the LED is attached to pin 18, so we use:
red_led = LED(18)

Now, if we want to turn the LED on we can just write:
red_led.on()

and to turn it off again:
red_led.off()

We can also make it do fancy things like blink on and off, as we did in Project 1,
using:
red_led.blink(on_time=0.5, off_time=0.5)

You can find an excellent tutorial on GPIO Zero here:
https://www.raspberrypi.org/blog/gpio-zero-a-friendly-python-api-for-physical-
computing/

And full documentation on the library here: https://gpiozero.readthedocs.io

Page 42

APPENDIX E. THE GUI ZERO LIBRARY
Laura Sach and Martin O’Hanlon at The Raspberry Pi Foundation have created a
Python library that makes it super easy to design GUIs. The installation script for
this kit installs this on your Raspberry Pi.

For example, Project 5 of this kit uses guizero to display the temperature. Before
you can use the library, you need to import the bits of it that you want to use in your
program.

For example if we just wanted a window containing a message here's the import
command:
from guizero import App, Text

The class App represents the application itself and every program you write that
uses guizero needs to import this. The only other class needed here is Text that is
used to display the message.

The following command creates the application window, specifying a title and the
window's starting dimensions.
app = App(title = "My Window", width="400", height="300")

To add some text to the window, we can use the line:
Text(app, text="Hello World", size=32)

The window is now prepared for display but won't actually appear until the program
runs the line:
app.display()

You can find out more about guizero here: https://lawsie.github.io/guizero/start/

Page 43

APPENDIX F. THE PI ANALOG LIBRARY
The PiAnalog library allows you to use analog sensors like the thermistor and
phototransistor with the entirely digital IO pins of the Raspberry Pi.

The resistance is measured using a capacitor, which acts as a temporary store of
charge. The relationship between the time taken for a capacitor to charge (or
discharge) is linked to the resistance and capacitance of the capacitor. The value of
the capacitance is known (here we used a 330nF capacitor) and so by connecting
the capacitor to the thermistor and timing how long the capacitor takes to discharge,
the resistance of the thermistor can be found. This resistance can then be plugged
into an equation (the Steinhart-Hart equation) to give an approximate value for the
temperature of the thermistor.

You can find full documentation on the Pi Analog library here, including an
explanation of the electronics and theory of how it works, here:
https://github.com/simonmonk/pi_analog

Page 44

BOOKS
This kit gives you a good set of parts to go off and start developing your own
projects. You may find that you want to learn more about using and programming
the Raspberry Pi. These books were written by the designer of this kit.

Page 45

OTHER KITS
As well as this kit, MonkMakes makes all sorts of kits and gadgets to help with your
projects.

Find out more, as well as where to buy here: https://monkmakes.com you can also
follow MonkMakes on Twitter @monkmakes.

Page 46

Amplified Speaker Kit for
Raspberry Pi

ServoSix Kit for Raspberry Pi

Clever Card Kit for Raspberry Pi

